5£®¸ß¶þÒ»°àÓÐA£¬BÁ½¸öÉç»áʵ¼ù»î¶¯Ð¡×飬ÿ×éÆß¸öÈË£¬ÏÖ´Óÿ×éÖи÷Ñ¡³öÒ»¸öÈË·Ö±ðÍê³ÉÒ»ÏîÊÖ¹¤×÷Æ·£¬Ã¿Î»³ÉÔ±Íê³É×÷Æ·ËùÐèÒªµÄʱ¼ä£¨µ¥Î»£ºÐ¡Ê±£©ÈçÏÂËùʾ
A×飺10£¬11£¬12£¬13£¬14£¬15£¬16£»
B×飺12£¬13£¬15£¬16£¬17£¬14£¬a
¼ÙÉèA¡¢BÁ½×éÿλ³ÉÔ±±»Ñ¡³öµÄ¿ÉÄÜÐÔ¾ùµÈ£¬´ÓA×éÑ¡³öµÄÈ˼ÇΪ¼×£¬´ÓB×éÑ¡³öµÄÈ˼ÇΪÒÒ
£¨1£©Èç¹ûa=18£¬Çó¼×ËùÓÃʱ¼ä±ÈÒÒËùÓÃʱ¼ä³¤µÄ¸ÅÂÊ£»
£¨2£©Èç¹ûa=14£¬Éè¼×ÓëÒÒËùÓÃʱ¼ä¶¼µÍÓÚ15£¬¼Ç¼×ÓëÒÒµÄËùÓÃʱ¼äµÄ²îµÄ¾ø¶ÔֵΪX£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®

·ÖÎö £¨1£©µ±a=18ʱ£¬»ù±¾Ê¼þ×ÜÊýn=7¡Á7=49£¬ÀûÓÃÁоٷ¨Çó³ö¼×ËùÓÃʱ¼äa±ÈÒÒËùÓÃʱ¼äb³¤°üº¬µÄ»ù±¾Ê¼þ£¨a£¬b£©µÄ¸öÊý£¬ÓÉ´ËÄÜÇó³ö¼×ËùÓÃʱ¼ä±ÈÒÒËùÓÃʱ¼ä³¤µÄ¸ÅÂÊ£®
£¨2£©a=14£¬Éè¼×ÓëÒҵĿµ¸´Ê±¼ä¶¼µÍÓÚ15£¬¼×µÄ¿µ¸´Ê±¼äÓëÒҵĿµ¸´Ê±¼äµÄ²îµÄ¾ø¶ÔֵΪX£¬ÓÉÌâÒâXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁкÍEX£®

½â´ð ½â£º£¨1£©µ±a=18ʱ£¬A¡¢BÁ½×éÿλ³ÉÔ±±»Ñ¡³öµÄ¿ÉÄÜÐÔ¾ùµÈ£¬´ÓA×éÑ¡³öµÄÈ˼ÇΪ¼×£¬´ÓB×éÑ¡³öµÄÈ˼ÇΪÒÒ£¬
»ù±¾Ê¼þ×ÜÊýn=7¡Á7=49£¬
¼×ËùÓÃʱ¼äa±ÈÒÒËùÓÃʱ¼äb³¤°üº¬µÄ»ù±¾Ê¼þ£¨a£¬b£©ÓУº
£¨13£¬12£©£¬£¨14£¬12£©£¬£¨14£¬13£©£¬£¨15£¬12£©£¬£¨15£¬13£©£¬£¨16£¬12£©£¬£¨16£¬13£©£¬£¨16£¬15£©£¬¹²8¸ö£¬
¡à¼×ËùÓÃʱ¼ä±ÈÒÒËùÓÃʱ¼ä³¤µÄ¸ÅÂÊp=$\frac{8}{49}$£®
£¨2£©¡ßa=14£¬Éè¼×ÓëÒҵĿµ¸´Ê±¼ä¶¼µÍÓÚ15£¬
¼×µÄ¿µ¸´Ê±¼äÓëÒҵĿµ¸´Ê±¼äµÄ²îµÄ¾ø¶ÔֵΪX£¬
¡àXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£¬
P£¨X=0£©=$\frac{1}{5}¡Á\frac{1}{2}+\frac{1}{4}¡Á\frac{1}{5}+\frac{1}{4}¡Á\frac{1}{5}$=$\frac{1}{5}$£¬
P£¨X=1£©=$\frac{1}{5}¡Á\frac{1}{2}+\frac{1}{5}¡Á\frac{1}{4}+\frac{1}{4}¡Á\frac{1}{5}+\frac{1}{5}¡Á\frac{1}{2}=\frac{3}{10}$£¬
P£¨X=2£©=$\frac{1}{5}¡Á\frac{1}{4}+\frac{1}{5}¡Á\frac{1}{4}+\frac{1}{5}¡Á\frac{1}{4}+\frac{1}{5}¡Á\frac{1}{2}=\frac{1}{4}$£¬
P£¨X=3£©=$\frac{1}{5}¡Á\frac{1}{4}+\frac{1}{5}¡Á\frac{1}{2}$=$\frac{3}{20}$£¬
P£¨X=4£©=$\frac{1}{5}¡Á\frac{1}{2}$=$\frac{1}{10}$£¬
¡àXµÄ·Ö²¼ÁÐΪ£º

 X 0 1 2 3 4
 P $\frac{1}{5}$ $\frac{3}{10}$ $\frac{1}{4}$ $\frac{3}{20}$ $\frac{1}{10}$
EX=$0¡Á\frac{1}{5}+1¡Á\frac{3}{10}+2¡Á\frac{1}{4}+3¡Á\frac{3}{20}+4¡Á\frac{1}{10}$=$\frac{33}{20}$£®

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼Áм°ÊýѧÆÚÍûµÄÇ󷨣¬¿¼²éÔËËãÇó½âÄÜÁ¦¡¢Êý¾Ý´¦ÀíÄÜÁ¦£¬¿¼²éÊýÐνáºÏ˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªº¯Êýf£¨x£©Âú×ãf£¨x£©=f£¨-x£©£¬ÇÒµ±x¡Ê£¨-¡Þ£¬0£©Ê±£¬f£¨x£©+xf'£¨x£©£¼0³ÉÁ¢£¬Èôa=£¨20.6£©•f£¨20.6£©£¬b=£¨ln2£©•f£¨ln2£©£¬c=£¨${{{log}_2}\frac{1}{8}}$£©•f£¨${{{log}_2}\frac{1}{8}}$£©£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
A£®a£¾b£¾cB£®c£¾b£¾aC£®a£¾c£¾bD£®c£¾a£¾b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÏÂÁнáÂÛÖÐÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
¢ÙÈôa£¾b£¬Ôòam2£¾bm2£»
¢ÚÔÚÏßÐԻعé·ÖÎöÖУ¬Ïà¹ØÏµÊýrÔ½´ó£¬±äÁ¿¼äµÄÏà¹ØÐÔԽǿ£»
¢ÛÒÑÖªËæ»ú±äÁ¿¦Î·þ´ÓÕý̬·Ö²¼N£¨1£¬¦Ò2£©£¬P£¨¦Î¡Ü4£©=0.79£¬ÔòP£¨¦Î¡Ü-2£©=0.21£»
¢ÜÒÑÖªl£¬mΪÁ½Ìõ²»Í¬Ö±Ïߣ¬¦Á£¬¦ÂΪÁ½¸ö²»Í¬Æ½Ã棬Èô¦Á¡É¦Â=l£¬m¡Î¦Á£¬m¡Î¦Â£¬Ôòm¡Îl£®
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÇÒF2Ò²ÊÇÅ×ÎïÏßE£ºy2=4xµÄ½¹µã£¬PΪÍÖÔ²CÓëÅ×ÎïÏßEÔÚµÚÒ»ÏóÏ޵Ľ»µã£¬ÇÒ|PF2|=$\frac{5}{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôËıßÐÎF1PF2QÊÇÆ½ÐÐËıßÐΣ¬Ö±Ïßl¡ÎPQ£¬ÓëÍÖÔ²C½»ÓÚA¡¢BÁ½µã£¬ÇÒÂú×ãÌõ¼þOA¡ÍOB£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\frac{x-2}{x+2}$ex£¬g£¨x£©=2lnx-ax£¨a¡ÊR£©
£¨1£©ÌÖÂÛf£¨x£©µÄµ¥µ÷ÐÔ£» 
£¨2£©Ö¤Ã÷£ºµ±b¡Ê[0£¬1£©Ê±£®º¯Êýh£¨x£©=$\frac{{e}^{x}-bx-b}{{x}^{2}}$£¨x£¾0£©ÓÐ×îСֵ£¬¼Çh£¨x£©µÄ×îСֵΪ¦Õ£¨b£©£¬Çó¦Õ£¨b£©µÄÖµÓò£» 
£¨3£©Èôg£¨x£©´æÔÚÁ½¸ö²»Í¬µÄÁãµãx1£¬x2£¨x1£¼x2£©£¬ÇóaµÄȡֵ·¶Î§£¬²¢±È½Ïg¡ä£¨$\frac{{x}_{1}+2{x}_{2}}{3}$£©Óë0µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©=2|x|£¬¼Ça=f£¨log0.52.2£©£¬b=f£¨log20.5£©£¬c=f£¨0.5£©£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÎª£¨¡¡¡¡£©
A£®a£¼b£¼cB£®c£¼a£¼bC£®a£¼c£¼bD£®c£¼b£¼a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®¶¨ÒåÔËË㣺$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3£¬½«º¯Êýf£¨x£©=$|\begin{array}{l}{\sqrt{3}}&{sin¦Øx}\\{1}&{cos¦Øx}\end{array}|$£¨¦Ø£¾0£©µÄͼÏóÏò×óÆ½ÒÆ$\frac{2¦Ð}{3}$¸öµ¥Î»£¬ËùµÃͼÏó¶ÔÓ¦µÄº¯ÊýΪżº¯Êý£¬Ôò¦ØµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{5}{4}$C£®$\frac{7}{4}$D£®$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖª¸´Êýz1=2-3i£¬z2=$\frac{15-5i}{£¨2+i£©^{2}}$£®Ç󣺣¨1£©z1+$\overline{{z}_{2}}$£»£¨2£©z1•z2£»£¨3£©$\frac{{z}_{1}}{{z}_{2}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1£¼0£¬an+1=$\frac{a_n}{{3{a_n}+1}}£¨n¡Ê{N^*}£©$£¬ÊýÁÐ{bn}Âú×㣺bn=nan£¨n¡ÊN*£©£¬ÉèSnΪÊýÁÐ{bn}µÄǰnÏîºÍ£¬µ±n=7ʱSnÓÐ×îСֵ£¬Ôòa1µÄȡֵ·¶Î§ÊÇ$£¨{-\frac{1}{18}£¬-\frac{1}{21}}£©$ £®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸