精英家教网 > 高中数学 > 题目详情
4.下列函数中,既是偶函数又在(0,π)上单调递增的是(  )
A.y=tanxB.y=cos(-x)C.$y=-sin({\frac{π}{2}-x})$D.y=|tanx|

分析 利用三角函数的性质逐个分析判断.

解答 解:对于A,y=tanx是奇函数,不符合题意;
对于B,y=cos(-x)=cosx在(0,π)上是减函数,不符合题意;
对于C,y=-sin($\frac{π}{2}$-x)=-cosx,∴y=-sin($\frac{π}{2}$-x)是偶函数,且在(0,π)上单调递增,符合题意;
对于D,y=|tanx|的定义域为{x|x≠$\frac{π}{2}$+kπ},不符合题意.
故选C.

点评 本题考查了三角函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知复数z1=2-3i,z2=$\frac{15-5i}{(2+i)^{2}}$.求:(1)z1+$\overline{{z}_{2}}$;(2)z1•z2;(3)$\frac{{z}_{1}}{{z}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}中,a1<0,an+1=$\frac{a_n}{{3{a_n}+1}}(n∈{N^*})$,数列{bn}满足:bn=nan(n∈N*),设Sn为数列{bn}的前n项和,当n=7时Sn有最小值,则a1的取值范围是$({-\frac{1}{18},-\frac{1}{21}})$ .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$θ∈(0,\frac{π}{2})$,$sinθ=\frac{3}{5}$.
(Ⅰ)求$sin(θ-\frac{π}{6})$的值;
(Ⅱ)求tan2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知-$\frac{π}{2}$<x<0,sinx+cosx=$\frac{1}{5}$.
(Ⅰ)求sinx-cosx的值;
(Ⅱ)求4sinxcosx-cos2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将3个骰子全部掷出,设出现6点的骰子的个数为X,则P(X≥2)=$\frac{2}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图所示,在塔底B测得山顶C的仰角为60°,在山顶测得塔顶A的仰角为45°,已知塔高AB=20米,则山高DC=10(3+$\sqrt{3}$)米.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知倾斜角为α的直线l与直线x-2y+2=0平行,则sinα的值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{5}}}{5}$C.$-\frac{{\sqrt{5}}}{5}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知下列命题:
①已知a,b是实数,若a+b是有理数,则a,b都是有理数;
②若a+b≥2,则a,b中至少有一个不小于1;
③关于x的不等式ax+b>0的解为$x>-\frac{b}{a}$;
④“方程ax2+bx+c=0有一根为1”的充要条件是“a+b+c=0”
其中真命题的序号是②④(请把所有真命题的序号都填上)

查看答案和解析>>

同步练习册答案