分析 设CD=x m,则AE=x-20 m,求出BD,在△AEC中,列出关系式,解得x就是山高CD.
解答
解:如图,设CD=x m,
则AE=x-20 m,
tan 60°=$\frac{CD}{BD}$,
∴BD=$\frac{CD}{tan60°}$=$\frac{x}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}x$ (m)…(6分)
在△AEC中,x-20=$\frac{\sqrt{3}}{3}$x,
解得x=10(3+$\sqrt{3}$) m.
故山高CD为10(3+$\sqrt{3}$) m…(12分).
故答案为:10(3+$\sqrt{3}$).
点评 本题考查三角形的解法,实际应用,基本知识的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=tanx | B. | y=cos(-x) | C. | $y=-sin({\frac{π}{2}-x})$ | D. | y=|tanx| |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com