精英家教网 > 高中数学 > 题目详情
9.将3个骰子全部掷出,设出现6点的骰子的个数为X,则P(X≥2)=$\frac{2}{27}$.

分析 由题意,每个骰子出现6点的概率为$\frac{1}{6}$,利用相互独立事件的概率乘法公式求得P(X=2)、P(X=3)的值,再用互斥事件的概率公式求和即可.

解答 解:每个骰子出现6点的概率为$\frac{1}{6}$,
P(X≥2)=P(X=2)+P(X=3)
=${C}_{3}^{2}$•${(\frac{1}{6})}^{2}$•$\frac{5}{6}$+${C}_{3}^{3}$•${(\frac{1}{6})}^{3}$
=$\frac{2}{27}$.
故答案为:$\frac{2}{27}$.

点评 本题考查了相互独立事件的概率乘法公式以及互斥事件的概率公式应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知F是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点,点P在椭圆C上,线段PF与圆${(x-\frac{c}{3})^2}+{y^2}=\frac{b^2}{9}$相切于点Q,且PQ=2QF,则椭圆C的离心率等于(  )
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{2}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2$\frac{A-B}{2}$cosB-sin(A-B)sinB+cos(A+C)=-$\frac{3}{5}$.若a=8,b=$\sqrt{3}$,那么∠B=arcsin$\frac{\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(Ⅰ)求值:$\frac{{tan150°cos{{210}°}sin({-60°})}}{{sin(-30°)cos{{120}°}}}$;
(Ⅱ)化简:$\frac{sin(-α)cos(π+α)tan(2π+α)}{cos(2π+α)sin(π-α)tan(-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,既是偶函数又在(0,π)上单调递增的是(  )
A.y=tanxB.y=cos(-x)C.$y=-sin({\frac{π}{2}-x})$D.y=|tanx|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知一个样本为x,1,y,5,若该样本的平均数为2,则它的方差的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,某处立交桥为一段圆弧AB.已知地面上线段AB=40米,O为AB中点.桥上距离地面最高点P,且OP高5米.工程师在OB中点C处发现他的正上方桥体有裂缝.需临时找根直立柱,立于C处,用于支撑桥体.求直立柱的高度.(精确到0.01米).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,从参加环保知识竞赛的学生中抽出80名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:
(1)[79.5,89.5)这一组的频数、频率分别是多少?
(2)估计这次环保知识竞赛的及格率(60分及以上为及格)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.关于直线l,m及平面α,β,下列命题正确的是(  )
A.若l∥α,α∩β=m,则l∥mB.若l⊥α,l∥β,则α⊥β
C.若l∥m,m?α,则l∥αD.若l∥α,m⊥l,则m⊥α

查看答案和解析>>

同步练习册答案