精英家教网 > 高中数学 > 题目详情
19.已知F是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点,点P在椭圆C上,线段PF与圆${(x-\frac{c}{3})^2}+{y^2}=\frac{b^2}{9}$相切于点Q,且PQ=2QF,则椭圆C的离心率等于(  )
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{2}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

分析 设椭圆的左焦点为F1,确定PF1⊥PF,|PF1|=b,|PF|=2a-b,即可求得a=$\frac{3}{2}$b,根据椭圆的离心率即可得到所求.

解答 解:设椭圆的左焦点为F1,连接F1,设圆心为C,则
∵${(x-\frac{c}{3})^2}+{y^2}=\frac{b^2}{9}$,则圆心坐标为($\frac{c}{3}$,0),半径为r=$\frac{b}{3}$,
∴|F1F|=3|FC|
∵PQ=2QF,∴PF1∥QC,|PF1|=b
∴|PF|=2a-b
∵线段PF与圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$(其中c2=a2-b2)相切于点Q,
∴CQ⊥PF
∴PF1⊥PF
∴b2+(2a-b)2=4c2
∴b2+(2a-b)2=4(a2-b2
∴a=$\frac{3}{2}$b,则$\frac{b}{a}$=$\frac{2}{3}$,
∴e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{5}}{3}$,
故选A.

点评 本题考查椭圆的几何性质,考查直线与圆的位置关系,确定几何量的关系是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=ax2+b(a≠0),若$\int_0^3{f(x)}dx=3f({x_0})$,x0>0,则x0=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知定义在R上的函数f(x)=2|x|,记a=f(log0.52.2),b=f(log20.5),c=f(0.5),则a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知复数z=x+yi(x,y∈R)满足z•$\overline{z}$+(1-2i)•z+(1+2i)•$\overline{z}$=3.求复数z在复平面内对应的点的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知复数z1=2-3i,z2=$\frac{15-5i}{(2+i)^{2}}$.求:(1)z1+$\overline{{z}_{2}}$;(2)z1•z2;(3)$\frac{{z}_{1}}{{z}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=|x-a|+|2x+2|-5(a∈R).
(Ⅰ)试比较f(-1)与f(a)的大小;
(Ⅱ)当a=-5时,求函数f(x)的图象与轴围成的图形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.把正整数排列成如图甲的三角形数阵,然后擦去第偶数行的奇数和第奇数行中的偶数,得到如图乙的三角数阵,再把图乙中的数按从小到大的顺序排成一列,得到数列{an},若an=623,则n的值为324.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数$f(x)=\left\{{\begin{array}{l}{\frac{x+1}{x-1}-1,x>1}\\{2-{e^x},x≤1}\end{array}}\right.$,若函数h(x)=f(x)-mx-2有且仅有一个零点,则实数m的取值范围是(-∞,-e]∪{0}∪{-$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将3个骰子全部掷出,设出现6点的骰子的个数为X,则P(X≥2)=$\frac{2}{27}$.

查看答案和解析>>

同步练习册答案