精英家教网 > 高中数学 > 题目详情
14.已知一个样本为x,1,y,5,若该样本的平均数为2,则它的方差的最小值为3.

分析 求出x+y=2,求出xy的最小值,根据方差的定义求出其最小值即可.

解答 解:样本x,1,y,5的平均数为2,
∴x+y=2,
∴xy≤1,
∴S2=$\frac{1}{4}$[(x-2)2+(y-2)2+10]
=$\frac{5}{2}$+$\frac{1}{4}$(x2+y2)≥$\frac{5}{2}$+$\frac{1}{4}$•2xy=$\frac{5}{2}$+$\frac{1}{4}$×2=3,
当且仅当x=y=1时“=”成立,
∴方差的最小值是3.
故答案为:3.

点评 本题考查了求数据的方差和平均数问题,也考查了基本不等式的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=|x-a|+|2x+2|-5(a∈R).
(Ⅰ)试比较f(-1)与f(a)的大小;
(Ⅱ)当a=-5时,求函数f(x)的图象与轴围成的图形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,F为线段BC的中点,CE=2EF,$DF=\frac{3}{5}AF$,设$\overrightarrow{AC}=a$,$\overrightarrow{AB}=b$,试用a,b表示$\overrightarrow{AE}$,$\overrightarrow{AD}$,$\overrightarrow{BD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若根据10名儿童的年龄x(岁)与体重y(千克)数据用最小二乘法得到用年龄预测体重的回归方程$\hat y=2x+7$,已知这10名儿童的年龄分别是2,3,3,5,2,6,7,3,4,5,则这10名儿童的平均体重是(  )
A.15千克B.16千克C.17千克D.18千克

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将3个骰子全部掷出,设出现6点的骰子的个数为X,则P(X≥2)=$\frac{2}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若MP和OM分别是角$\frac{7π}{6}$的正选线和余弦线,则(  )
A.MP<OM<0B.OM>0>MPC.OM<MP<0D.MP>0>OM

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.对于函数$f(x)=\sqrt{2}(sinx+cosx)$,给出下列四个命题:
①存在$α∈(-\frac{π}{2},0)$,使$f(α)=\sqrt{2}$;
②函数f(x)的图象关于直线$x=-\frac{3π}{4}$对称;
③存在φ∈R,使函数f(x+ϕ)的图象关于坐标原点成中心对称;
④函数f(x)的图象向左平移$\frac{π}{4}$就能得到y=-2cosx的图象.
其中正确命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知P=$\{0,1,\sqrt{2}\}$,Q={y|y=cosθ,θ∈R},则P∩Q=(  )
A.ϕB.{0}C.{0,1}D.$\{0,1,\sqrt{2}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a,b,c分别为△ABC的三个内角A,B,C的对边,$\frac{a-c}{b-c}$=$\frac{sinB}{sinA+sinC}$.
(Ⅰ)求∠A的大小;
(Ⅱ)若a=$\sqrt{3}$,△ABC在BC边上的中线长为1,求△ABC的周长.

查看答案和解析>>

同步练习册答案