精英家教网 > 高中数学 > 题目详情
19.若MP和OM分别是角$\frac{7π}{6}$的正选线和余弦线,则(  )
A.MP<OM<0B.OM>0>MPC.OM<MP<0D.MP>0>OM

分析 在单位圆中画出角$\frac{7π}{6}$的正弦线MP和余弦线OM,根据图形与正弦线、余弦线的定义比较它们的大小即可.

解答 解:在单位圆中画出角$\frac{7π}{6}$的正弦线MP和余弦线OM,如图所示;

则OM<MP<0.
故选:C.

点评 本题考查了三角函数线的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.用系统抽样的方法从300名学生中抽取容量为20的样本,将300名学生从1-300编号,按编号顺序平均分组.若第16组应抽出的号码为232,则第一组中抽出的号码是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知[x]表示不大于x的最大整数,设函数f(x)=[log2x],得到下列结论:
结论1:当1<x<2时,f(x)=0;
结论2:当2<x<4时,f(x)=1;
结论3:当4<x<8时,f(x)=2;
照此规律,得到结论10:当29<x<210时,f(x)=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.有编号分别为1、2、3、4的四个盒子和四个小球,把小球全部放入盒子,则恰有一个空盒子的放法数为144.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知一个样本为x,1,y,5,若该样本的平均数为2,则它的方差的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知sinx=$\frac{3}{5},且\frac{π}{2}$<x<π,则tanx=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$tan2θ=-2\sqrt{2}$,$θ∈(\frac{π}{4},\frac{π}{2})$.
(1)求tanθ的值;
(2)求$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ-1}}{{\sqrt{2}sin(\frac{π}{4}+θ)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某市文化部门为了了解本市市民对当地地方戏曲是否喜爱,从15-65岁的人群中随机抽样了n人,得到如下的统计表和频率分布直方图.
组号分组喜爱人数喜爱人数
占本组的频率
第1组[15,25)a0.10
第2组[25,35)b0.20
第3组[35,45)60.40
第4组[45,55)120.60
第5组[55,65]200.80
(1)写出其中a,b,n及x和y的值;
(2)若从第1,2,3,组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求抽取的2人年龄都在[35,45)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)已知$a>0,b>0且a+b>2,求证:\frac{1+b}{a},\frac{1+a}{b}$中至少有一个小于2.
(2)已知a>0,$\frac{1}{b}$-$\frac{1}{a}$>1,求证:$\sqrt{1+a}$>$\frac{1}{\sqrt{1-b}}$.

查看答案和解析>>

同步练习册答案