精英家教网 > 高中数学 > 题目详情
9.(1)已知$a>0,b>0且a+b>2,求证:\frac{1+b}{a},\frac{1+a}{b}$中至少有一个小于2.
(2)已知a>0,$\frac{1}{b}$-$\frac{1}{a}$>1,求证:$\sqrt{1+a}$>$\frac{1}{\sqrt{1-b}}$.

分析 (1)使用反证法证明;
(2)使用分析法证明.

解答 证明:(1)假设$\frac{1+b}{a},\frac{1+a}{b}$都不小于2,
则$\frac{1+b}{a}≥2,\frac{1+a}{b}≥2$,
∵a>0,b>0,∴1+b≥2a,1+a≥2b,
两式相加得:2+a+b≥2(a+b),解得 a+b≤2,
这与已知a+b>2矛盾,
故假设不成立,
∴$\frac{1+b}{a},\frac{1+a}{b}$中至少有一个小于2.
(2)∵$\frac{1}{b}$-$\frac{1}{a}$>1,a>0,∴0<b<1,
要证$\sqrt{1+a}$>$\frac{1}{\sqrt{1-b}}$,只需证$\sqrt{1+a}$•$\sqrt{1-b}$>1,
只需证1+a-b-ab>1,只需证a-b-ab>0,即$\frac{a-b}{ab}$>1.
即$\frac{1}{b}$-$\frac{1}{a}$>1.这是已知条件,
所以原不等式成立.

点评 本题考查了不等式的证明,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若MP和OM分别是角$\frac{7π}{6}$的正选线和余弦线,则(  )
A.MP<OM<0B.OM>0>MPC.OM<MP<0D.MP>0>OM

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)
频数62638228
(1)作出这些数据的频数分布直方图;
(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中间值来代表这种产品质量的指标值);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的85%”的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.变量x,y满足$\left\{\begin{array}{l}{x+y≤2}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,若存在x,y使得xy=k(k>0),则k的最大值是(  )
A.1B.2C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a,b,c分别为△ABC的三个内角A,B,C的对边,$\frac{a-c}{b-c}$=$\frac{sinB}{sinA+sinC}$.
(Ⅰ)求∠A的大小;
(Ⅱ)若a=$\sqrt{3}$,△ABC在BC边上的中线长为1,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知i为虚数单位,$\overline z$是复数z的共轭复数,若$z=cos\frac{2π}{3}+isin\frac{2π}{3}$,则$\overline z$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=2sin(ωx+ϕ)-1(ω>0,|φ|<π)的一个零点是$x=\frac{π}{3}$,其图象上一条对称轴方程为$x=-\frac{π}{6}$,则当ω取最小值时,下列说法正确的是①③.(填写所有正确说法的序号)
①当$x∈[-\frac{4π}{3},-\frac{π}{6}]$时,函数f(x)单调递增;
②当$x∈[-\frac{π}{6},\frac{5π}{3}]$时,函数f(x)单调递减;
③函数f(x)的图象关于点$(\frac{7π}{12},-1)$对称;
④函数f(x)的图象关于直线$x=\frac{-4π}{3}$对称.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R上的奇函数f(x),当x≥0时,f(x)单调递增,若不等式f(-4t)>f(2mt2+m)对任意实数t恒成立,则实数m的取值范围是(  )
A.(-∞,-$\sqrt{2}$)B.(-$\sqrt{2}$,0)C.(-∞,0)∪($\sqrt{2}$,+∞)D.(-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对于下列表格所示的五个散点,已知求得的线性回归直线方程为$\stackrel{∧}{y}$=0.8x-155.
x197198201204205
y1367m
则实数m的值为12.

查看答案和解析>>

同步练习册答案