精英家教网 > 高中数学 > 题目详情
15.设m,n为空间两条不同的直线,α、β为空间两个不同的平面,给出下列命题:
①若m∥α,m∥β,则α∥β;
②若m∥α,m∥n,则n∥α;
③若m⊥α,m∥β,则α⊥β;
④若m⊥α,α∥β,则m⊥β
写出所有正确命题的序号③④.

分析 在①中,α与β相交或平行;在②中,n∥α或n?α;在③中,由面面垂直的判定定理得α⊥β;在④中,由线面垂直的判定定理得m⊥β.

解答 解:由m,n为空间两条不同的直线,α、β为空间两个不同的平面,知:
在①中,若m∥α,m∥β,则α与β相交或平行,故①错误;
在②中,若m∥α,m∥n,则n∥α或n?α,故②错误;
在③中,若m⊥α,m∥β,则由面面垂直的判定定理得α⊥β,故③正确;
在④中,若m⊥α,α∥β,则由线面垂直的判定定理得m⊥β,故④正确.
故答案为:③④.

点评 本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.抛掷两枚质地均匀的正四面体骰子,其4个面分别标有数字1,2,3,4,记每次抛掷朝下一面的数字中较大者为a(若两数相等,则取该数),平均数为b,则事件“a-b=1”发生的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,斜三棱柱ABC-A1B1C1中,侧面AA1B1B为菱形,底面△ABC是等腰直角三角形,∠BAC=90°,A1B⊥B1C.
(1)求证:直线AC⊥直线BB1
(2)若直线BB1与底面ABC成的角为60°,求二面角A-BB1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列结论中正确的个数是(  )
①若a>b,则am2>bm2
②在线性回归分析中,相关系数r越大,变量间的相关性越强;
③已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ≤-2)=0.21;
④已知l,m为两条不同直线,α,β为两个不同平面,若α∩β=l,m∥α,m∥β,则m∥l.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x>0,y>0,且$\frac{1}{3x+y}$+$\frac{2}{x+2y}$=2,则x+y的最小值是$\frac{9}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,且F2也是抛物线E:y2=4x的焦点,P为椭圆C与抛物线E在第一象限的交点,且|PF2|=$\frac{5}{3}$.
(1)求椭圆C的方程;
(2)若四边形F1PF2Q是平行四边形,直线l∥PQ,与椭圆C交于A、B两点,且满足条件OA⊥OB,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{x-2}{x+2}$ex,g(x)=2lnx-ax(a∈R)
(1)讨论f(x)的单调性; 
(2)证明:当b∈[0,1)时.函数h(x)=$\frac{{e}^{x}-bx-b}{{x}^{2}}$(x>0)有最小值,记h(x)的最小值为φ(b),求φ(b)的值域; 
(3)若g(x)存在两个不同的零点x1,x2(x1<x2),求a的取值范围,并比较g′($\frac{{x}_{1}+2{x}_{2}}{3}$)与0的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义运算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,将函数f(x)=$|\begin{array}{l}{\sqrt{3}}&{sinωx}\\{1}&{cosωx}\end{array}|$(ω>0)的图象向左平移$\frac{2π}{3}$个单位,所得图象对应的函数为偶函数,则ω的最小值是(  )
A.$\frac{1}{4}$B.$\frac{5}{4}$C.$\frac{7}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{mx-n}{x}$-lnx,m,n∈R.
(Ⅰ)若函数f(x)在(2,f(2))处的切线与直线x-y=0平行,求实数n的值;
(Ⅱ)试讨论函数f(x)在区间[1,+∞)上最大值;
(Ⅲ)若n=1时,函数f(x)恰有两个零点x1,x2(0<x1<x2),求证:x1+x2>2.

查看答案和解析>>

同步练习册答案