精英家教网 > 高中数学 > 题目详情
20.二项式${({\frac{x}{4}-\frac{2}{{\sqrt{x}}}})^6}$的展开式中的常数项为15.

分析 利用二项式的通项公式即可得出.

解答 解:二项式${({\frac{x}{4}-\frac{2}{{\sqrt{x}}}})^6}$的展开式的通项公式为Tr+1=C6r($\frac{x}{4}$)6-r(-$\frac{2}{\sqrt{x}}$)r=(-1)rC6r23r-12x${\;}^{6-\frac{3}{2}r}$,
令6-$\frac{3}{2}$r=0,解得r=4,
∴二项式${({\frac{x}{4}-\frac{2}{{\sqrt{x}}}})^6}$的展开式中的常数项为(-1)4C6420=15
故答案为:15.

点评 本题考查了二项式的通项公式、常数项的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin($\frac{5π}{6}$-2x)-2sin(x-$\frac{π}{4}$)cos(x+$\frac{3π}{4}$).
(1)求函数f(x)的最小值正周期和单调递增区间;
(2)若x0∈[$\frac{π}{3}$,$\frac{7π}{12}$],且f(x0)=$\frac{1}{3}$,求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=$\frac{1}{2}$tan(2x+$\frac{π}{3}$)+1的图象的对称中心为($\frac{1}{4}kπ-\frac{π}{6}$,1),k∈Z..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=eax(a≠0).
(1)当$a=\frac{1}{2}$时,令$g(x)=\frac{f(x)}{x}$(x>0),求函数g(x)在[m,m+1](m>0)上的最小值;
(2)若对于一切x∈R,f(x)-x-1≥0恒成立,求a的取值集合;
(3)求证:$\sum_{i=1}^n{\frac{1}{{i{{({\sqrt{e}})}^i}}}}<\frac{4}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某校高考数学成绩ξ近似地服从正态分布N(100,52),且P(ξ<110)=0.96,则P(90<ξ<100)的值为(  )
A.0.49B.0.48C.0.47D.0.46

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x||x-1|<1},B={x|x2-1<0},则A∪B=(  )
A.(-1,1)B.(-1,2)C.(1,2)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设D为△ABC中BC边上的中点,且O为AD边的中点,则(  )
A.$\overrightarrow{BO}=-\frac{3}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$B.$\overrightarrow{BO}=-\frac{1}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$C.$\overrightarrow{BO}=\frac{3}{4}\overrightarrow{AB}-\frac{1}{4}\overrightarrow{AC}$D.$\overrightarrow{BO}=-\frac{1}{2}\overrightarrow{AB}-\frac{1}{4}\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.把正整数按“f(x)”型排成了如图所示的三角形数表,第f(x)行有f(x)个数,对于第f(x)行按从左往右的顺序依次标记第1列,第2列,…,第f(x)列(比如三角形数表中12在第5行第4列,18在第6行第3列),则三角形数表中2017在(  )
A.第62行第2列B.第64行第64列C.第63行第2列D.第64行第1列

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若$cos(α+β)=\frac{3}{5}$,$cos(α-β)=\frac{4}{5}$,则tanαtanβ=$\frac{1}{7}$.

查看答案和解析>>

同步练习册答案