精英家教网 > 高中数学 > 题目详情
如图所示的频率分布直方图,其中阴影部分的小长方形的高度是(  )
A、0.4B、0.8
C、1.4D、1.6
考点:频率分布直方图
专题:计算题,概率与统计
分析:利用四个长方形的面积之和为1即可求得阴影部分的小长方形的高度.
解答: 解:设图中阴影部分的小长方形的高度是h,
∵频率之和为1,即四个长方形的面积之和为1,
∴0.1×0.5+0.5×3+0.5h+0.5×0.2=1,
解得h=1.4.
故选:C.
点评:本题考查频率分布直方图,明确四个长方形的面积之和为1是关键,考查理解与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

不等式2x+3y-4<0表示的平面区域在直线2x+3y-4=0的
 
 (填“上方”或“下方”)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y∈Z,n∈N*,设f(n)是不等式组
x≥1
0≤y≤-x+n
表示的平面区域内可行解的个数,则f(2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知D是面积为1的△ABC的边AB上任一点,E是边AC上任一点,连结DE,F是线段DE上一点,连结BF,G是BF上一点,设
AD
=λ1
AB
AE
=λ2
AC
DF
=λ3
DE
BG
=λ4
BF
,且λ1+λ4-λ2-λ3=
2
3
,记△GDF的面积为S=f(λ1,λ2,λ3,λ4),则S的最大值是(  )
A、
16
81
B、
1
64
C、
8
81
D、
1
81

查看答案和解析>>

科目:高中数学 来源: 题型:

某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为2cm的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为2cm的圆(包括圆心),则该零件的表面积是(  )
A、4πcm2
B、8πcm2
C、(4+2
5
)πcm2
D、(8+2
5
)πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知tan α=
1
3
,求
1
2sinαcosα+cos2α
的值;
(2)化简:
tan(π-α)cos(2π-α)sin(-α+
3
2
π)
cos(-α-π)sin(-π-α)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2-2ax-6ay+10a2-4a=0(0<a≤4)的圆心为C,直线L:y=x+m.
(1)若a=2,求直线L被圆C所截得的弦长|AB|的最大值;
(2)若m=2,求直线L被圆C所截得的弦长|AB|的最大值;
(3)若直线L是圆心C下方的切线,当a变化时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sin2x+sin2x+3cos2x,求
(1)函数的最小值及此时的x的集合.
(2)函数的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂拟建一座底面为矩形、面积为200平方米且深为1米的无盖长方体的三级污水池(如图所示)如果池外圈四壁建造单价为每平方米400元,中间两条隔墙建造单价为每平方米248元,池底建造单价为每平方米80元.
(1)试设计污水池底面的长和宽,使总造价最低,并求出最低造价;
(2)由于受地形限制,地面的长、宽都不超过16米,试设计污水池底面的长和宽,使总造价最低,并求出最低造价.

查看答案和解析>>

同步练习册答案