精英家教网 > 高中数学 > 题目详情
19.设函数f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x-1,x≥0}\\{\frac{1}{x},x<0}\end{array}\right.$ 若f(a)>1,则实数a的取值范围是a>4.

分析 根据已知中的分段函数f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x-1,x≥0}\\{\frac{1}{x},x<0}\end{array}\right.$,分段讨论满足f(a)>1的实数a的取值范围,综合讨论结果,可得答案.

解答 解:当a≥0时,由$\frac{1}{2}a-1>1$得:a>4,
当a<0时,不等式$\frac{1}{a}>1$无解,
综上满足f(a)>1的实数a的取值范围是:a>4
故答案为a>4

点评 本题考查的知识点是分段函数的应用,分段函数分段处理,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.求函数y=x+$\sqrt{1-2x}$-1的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.有A,B,C三台机床,一个工人一分钟内可照看其中任意两台,在一分钟内A未被照看的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知关于x的方程ax2-(a+1)x+2=0在区间[0,1]上有实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数f(x)=-$\frac{{x}^{2}}{|x|}$+x2的定义域,并画出它的图象,再求其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若曲线y=$\frac{1}{2}$sinx与y=tanx在x=α(0<α<π且α≠$\frac{π}{2}$)处的切线互相垂直,则α=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知2b=a+c且a≠c.求证:b2≠ac.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设二次函数f(x)满足f(x+2)=f(2-x),且方程f(x)=0的两实根的平方和为10,f(x)的图象过点(0,3).
(1)求f(x)的解析式.
(2)求y=f(x)在[1,3]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合A={x|-1<x≤5},B={x|3<x<5},则A∩B=(  )
A.{x|3<x<5}B.{x|-1<x<5}C.{x|-1<x<1}D.{x|1<x<3}

查看答案和解析>>

同步练习册答案