精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若函数上无极值点,试讨论函数的单调性;

(2)证明:当时,对于任意,不等式恒成立.

【答案】(1) 时,上单调递增;当时,上单调递减;当时,单调递增,

单调递减;当时,

单调递减,在单调递增.

(2)见解析.

【解析】分析:(1)求出导数,由无极值点,得 (或恒成立,从而得,于是的,再求出导数,通过研究的根的情况得出)的解集,从而得的单调性;

(2)利用导数知识可证,又在时,,因此要证题中不等式成立,只要证,这可由二次函数的性质得证.

详解:(1)

因为函数上没有极值点,所以有,解得

此时

(i)当时,在,单调递减,

,单调递增,

(ii)当时,令方程,解得

①当时,在,函数单调递增,

②当时,在,函数单调递减,

,即时,方程的两根为

③当时,, 当

单调递减;当时,单调递增,

④当时,,当

单调递增;当时,单调递减.

综上所述:当时,上单调递增;当时,上单调递减;当时,单调递增,

单调递减;当时,

单调递减,在单调递增.

(2)解:令可得

时,单调递减单调递增,

所以,即

因为所以

又当时,,事实上.

要证原不等式成立,只需证明不等式,即.

事实上,令.

因为,二次函数的对称轴为,所以

关于上单调递减,所以

所以.

所以,当对于任意的

不等式恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为 (其中为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系中,直线的极坐标方程为.

C的普通方程和直线的倾斜角;

设点(0,2),交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知扇形的周长为8,面积是4,求扇形的圆心角.

(2)已知扇形的周长为40,当它的半径和圆心角取何值时,才使扇形的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cos xC2y=sin (2x+),则下面结论正确的是( )

A. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某儿童乐园在六一儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为xy.奖励规则如下:

,则奖励玩具一个;

,则奖励水杯一个;

其余情况奖励饮料一瓶.

假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.

)求小亮获得玩具的概率;

)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或

者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息( )元.参考数据:

A. 176 B. 100 C. 77 D. 88

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知则下列结论中正确的是

A. 将函数的图象向左平移个单位后得到函数的图象

B. 函数图象关于点中心对称

C. 函数的图象关于对称

D. 函数在区间内单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若抛物线的焦点是,准线是,点是抛物线上一点,则经过点且与相切的圆共( )

A. 0个 B. 1个 C. 2个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1) 如果,求函数的值域;

(2) 求函数的最大值;

(3) 如果对不等式中的任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案