【题目】若抛物线
的焦点是
,准线是
,点
是抛物线上一点,则经过点
、
且与
相切的圆共( )
A. 0个 B. 1个 C. 2个 D. 4个
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱
中,
,
为棱
的中点,
为棱
上一点,
.
![]()
(1)确定
的位置,使得平面
平面
,并说明理由;
(2)设二面角
的正切值为
,
,
为线段
上一点,且
与平面
所成角的正弦值为
,求线段
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数).以坐标原点为极点,
轴正半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(1)求直线
和圆
的普通方程;
(2)已知直线
上一点
,若直线
与圆
交于不同两点
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
(1)求证:![]()
(2)若函数
的图象与直线
没有交点,求实数
的取值范围;
(3)若函数
,则是否存在实数
,使得
的最小值为
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差 x (℃) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数 y(个) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.
(1)请根据2、3、4、5月的数据,求出y关于x的线性回归方程
;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考公式:
, ![]()
)
参考数据:11×25+13×29+12×26+8×16=
1092,112+132+122+82=498.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).
![]()
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,
求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com