精英家教网 > 高中数学 > 题目详情
11.在平面直角坐标系xOy中,记不等式组$\left\{\begin{array}{l}{x+y≥0}\\{x-y≤0}\\{y≤2}\end{array}\right.$,所表示的平面区域为D.在映射T:$\left\{\begin{array}{l}{u=x+y}\\{v=x-y}\end{array}\right.$的作用下,区域D内的点(x,y)对应的象为点(u,v),则由点(u,v)所形成的平面区域的面积为8.

分析 据已知求出点(u,v)的横坐标、纵坐标满足的约束条件,画出可行域,求出图象的面积即得.

解答 解:∵不等式组$\left\{\begin{array}{l}{x+y≥0}\\{x-y≤0}\\{y≤2}\end{array}\right.$,而$\left\{\begin{array}{l}{u=x+y}\\{v=x-y}\end{array}\right.$,
∴$\left\{\begin{array}{l}{u≥0}\\{v≤0}\\{\frac{u-v}{2}≤2}\end{array}\right.$即$\left\{\begin{array}{l}{u≥0}\\{v≤0}\\{u-v≤4}\end{array}\right.$,
作出$\left\{\begin{array}{l}{u≥0}\\{v≤0}\\{u-v≤4}\end{array}\right.$,
所形成的平面区域,面积为$\frac{1}{2}$×4×4=8.
故答案为:8.

点评 本题主要考查了求出点满足的约束条件,画出不等式组表示的平面区域,求图象的面积,同时考查了作图能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=sinxcosx+\sqrt{3}{cos^2}x-\frac{{\sqrt{3}}}{2}$.
(1)求f(x)的最小正周期和对称轴;
(2)将函数f(x)的图象向右平移$\frac{π}{4}$个单位后,再将得到的图象上各点的横坐标缩短为原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若α是第四象限角,且$cosα=\frac{3}{5}$,则$cos(\frac{π}{2}-α)$等于(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.化简:$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$,α∈(π,$\frac{3π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆(x+1)2+y2=9与直线y=tx+3交于A,B两点,点P(a,b)在直线y=2x上,且PA=PB,则a的取值范围为(-1,0)∪(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设角θ的终边经过点(3,-4),则cos(θ+$\frac{π}{4}$)的值等于$\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ln x.
(1)求证:当0<x<1时,f(1+x)<x-$\frac{{x}^{3}}{6}$;
(2)设g(x)=ax-(x+1)f(x+1),若g(x)的最大值不大于0,求a的取值集合;
(3)求证:(1+1)(1+$\frac{1}{\sqrt{2}}$)…(1+$\frac{1}{\sqrt{n}}$)>${e}^{\sqrt{n}-\frac{2}{5}}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设数列{an}的前n项和Sn,若$\frac{{{a_1}^2}}{1^2}$+$\frac{{{a_2}^2}}{2^2}$+$\frac{{{a_3}^2}}{3^2}$+…+$\frac{{{a_n}^2}}{n^2}$=4n-4,且an≥0,则S100等于(  )
A.5048B.5050C.10098D.10100

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线l1:3x+4y-2=0与l2:6x+8y+1=0的距离是$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案