精英家教网 > 高中数学 > 题目详情
20.设数列{an}的前n项和Sn,若$\frac{{{a_1}^2}}{1^2}$+$\frac{{{a_2}^2}}{2^2}$+$\frac{{{a_3}^2}}{3^2}$+…+$\frac{{{a_n}^2}}{n^2}$=4n-4,且an≥0,则S100等于(  )
A.5048B.5050C.10098D.10100

分析 根据题意推知数列{an}的通项公式是an=2n(n≥2),然后由前n项和公式进行解答即可.

解答 解:当n=1时,$\frac{{{a_1}^2}}{1^2}$=0,则a1=0.
当n≥2时,$\frac{{{a_1}^2}}{1^2}$+$\frac{{{a_2}^2}}{2^2}$+$\frac{{{a_3}^2}}{3^2}$+…+$\frac{{{a}_{n-1}}^{2}}{(n-1)^{2}}$+$\frac{{{a_n}^2}}{n^2}$=4n-4,①
$\frac{{{a_1}^2}}{1^2}$+$\frac{{{a_2}^2}}{2^2}$+$\frac{{{a_3}^2}}{3^2}$+…+$\frac{{{a}_{n-1}}^{2}}{(n-1)^{2}}$=4n-8,②
$\frac{{{a_1}^2}}{1^2}$+$\frac{{{a_2}^2}}{2^2}$+$\frac{{{a_3}^2}}{3^2}$+…+$\frac{{{a_n}^2}}{n^2}$+$\frac{{{a}_{n+1}}^{2}}{(n+1)^{2}}$=4n,③
由①-②得到:$\frac{{{a_n}^2}}{n^2}$=4,
∵an≥0,
∴an=2n,
由③-①得到:$\frac{{{a}_{n+1}}^{2}}{(n+1)^{2}}$=4,
∴an+1=2n+2,
∴an+1-an=2,
∴数列{an}是等差数列,公差是2,
综上所述,an=$\left\{\begin{array}{l}{0(n=1)}\\{2n(n≥2)}\end{array}\right.$,
∴S100=S1+S2+S3++…+S100=0+$\frac{4+2×100}{2}$×(100-1)=10098.
故选:C.

点评 本题考查了数列求和.解题的关键是求得数列{an}的通项公式,在求该通项公式时,要分类讨论:n=1和n≥2两种情况,以防错解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人):
高校相关人数抽取人数
A18x
B362
C54y
(1)求表中的x和y;
(2)若从高校B,C抽取的人中选2人进行专题发言,求这2人来自不同高校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在平面直角坐标系xOy中,记不等式组$\left\{\begin{array}{l}{x+y≥0}\\{x-y≤0}\\{y≤2}\end{array}\right.$,所表示的平面区域为D.在映射T:$\left\{\begin{array}{l}{u=x+y}\\{v=x-y}\end{array}\right.$的作用下,区域D内的点(x,y)对应的象为点(u,v),则由点(u,v)所形成的平面区域的面积为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lg(a-ax-x2).
(Ⅰ)若函数f(x)存在,求a的取值范围.
(Ⅱ) 若f(x)在x∈(2,3)上有意义,求a的取值范围.
(Ⅲ)若f(x)>0的解集为(2,3),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知在直角坐标系xOy中,圆锥曲线C的参数方程为$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(θ为参数),直线l经过定点P(1,1),倾斜角为$\frac{π}{3}$.
(Ⅰ)写出直线l的参数方程和圆锥曲线C的标准方程;
(Ⅱ)设直线l与圆锥曲线C相交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果直线x+2ay-1=0与直线(3a-1)x-4ay-1=0平行,则a等于(  )
A.0B.-$\frac{1}{3}$C.0或-$\frac{1}{3}$D.0或1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.空间中直线l和三角形的两边AC,BC同时垂直,则这条直线和三角形的第三边AB的位置关系是垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(2x-1)的定义域为(-1,1],则函数f(log${\;}_{\frac{1}{2}}}$x)的定义域为[$\frac{1}{2}$,8).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若存在实数a,当x≤1时,2x-1≤ax+b 恒成立,则实数b的取值范围是(  )
A.[1,+∞)B.[2,+∞)C.[3,+∞)D.[4,+∞)

查看答案和解析>>

同步练习册答案