精英家教网 > 高中数学 > 题目详情
19.化简:$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$,α∈(π,$\frac{3π}{2}$)

分析 二倍角公式和根式的性质化简即可

解答 解:∵α∈(π,$\frac{3π}{2}$),
∴$\frac{α}{2}$∈($\frac{π}{2}$,$\frac{3π}{4}$)
∴cosα<0,cos$\frac{α}{2}$<0
$\frac{1}{2}$+$\frac{1}{2}$cos2α=$\frac{1}{2}$+$\frac{1}{2}$(2cos2α-1)=cos2α,
∴$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$=$\sqrt{\frac{1}{2}-\frac{1}{2}cosα}$=$\sqrt{co{s}^{2}\frac{α}{2}}$=-cos$\frac{α}{2}$

点评 本题考查了二倍角公式和根式的化简,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如果一个水平放置的图形的斜二测直观图是一个底角为60°,腰和上底均为1的等腰梯形,那么原平面图形的面积是$\frac{{3\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人):
高校相关人数抽取人数
A18x
B362
C54y
(1)求表中的x和y;
(2)若从高校B,C抽取的人中选2人进行专题发言,求这2人来自不同高校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.圆C的极坐标方程为:ρ=2sinθ,则其圆心C的直角坐标是(  )
A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知平面α∥平面β,点A,B∈α,点C,D∈β,且AC∥BD,求证:AC=BD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在边长为2的菱形ABCD中,∠BAD=60°,若点E为AB边上的动点,点F是AD边上的动点,且$\overrightarrow{AE}$=λ$\overrightarrow{AB}$,$\overrightarrow{AF}$=(1-λ)$\overrightarrow{AD}$,0≤λ≤1,则$\overrightarrow{DE}$•$\overrightarrow{BF}$的最大值为$-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在平面直角坐标系xOy中,记不等式组$\left\{\begin{array}{l}{x+y≥0}\\{x-y≤0}\\{y≤2}\end{array}\right.$,所表示的平面区域为D.在映射T:$\left\{\begin{array}{l}{u=x+y}\\{v=x-y}\end{array}\right.$的作用下,区域D内的点(x,y)对应的象为点(u,v),则由点(u,v)所形成的平面区域的面积为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lg(a-ax-x2).
(Ⅰ)若函数f(x)存在,求a的取值范围.
(Ⅱ) 若f(x)在x∈(2,3)上有意义,求a的取值范围.
(Ⅲ)若f(x)>0的解集为(2,3),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(2x-1)的定义域为(-1,1],则函数f(log${\;}_{\frac{1}{2}}}$x)的定义域为[$\frac{1}{2}$,8).

查看答案和解析>>

同步练习册答案