精英家教网 > 高中数学 > 题目详情
9.如图,AB为圆O的直径,BC为圆O的切线,连结AC交圆O于D,P为AD的中点,过P作不同于AD的弦交圆O于M、N两点,若BC=6,CD=4
(Ⅰ)求MP•NP的值
(Ⅱ)求证:∠C=∠AMD.

分析 (Ⅰ)利用切割线定理、相交弦定理,即可求MP•NP的值
(Ⅱ)证明∠C=∠DBA,∠DBA=∠AMD,即可证明∠C=∠AMD.

解答 (Ⅰ)解:因为BC为圆O的切线,所以BC2=CD•AC,
因为BC=6,CD=4
所以AC=9,
所以AD=5,
因为P为AD的中点,
所以AP=PD=$\frac{5}{2}$
所以MP•NP=AP•PD=$\frac{25}{4}$
(Ⅱ)证明:连接BD,则∠ABC=90°,
所以∠C+∠CAB=90°,
因为AB为直径,
所以∠ADB=90°,
所以∠CAB+∠DBA=90°,
所以∠C=∠DBA,
因为∠DBA=∠AMD,
所以∠C=∠AMD.

点评 本题考查切割线定理、相交弦定理,考查学生分析解决问题的能力,正确运用切割线定理、相交弦定理是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对的边分别为a,b,c.且C=2A,tanA=$\frac{{\sqrt{7}}}{3}$,a+c=5.
(Ⅰ)求sinA,cosA;
(Ⅱ)求b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.己知等比数列{an}的第5项是二项式($\frac{1}{9{x}^{2}}$+x-$\frac{2}{3\sqrt{x}}$)3展开式的常数项,则a3a7=$\frac{25}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果图中的程序执行后输出的结果是720,那么在程序While后面的条件应为(  )
A.i>8B.i>7C.i≥7D.i≥6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.现有四种不同颜色的染料,给如图的四个不同区域染色,每个区域只染一种颜色,相邻区域染不同的颜色,不同颜色可重复使用,则共有108种不同分染色方法(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+x有两个极值点;命题q:函数g(x)=x${\;}^{{a}^{2}-a}$在(0,+∞)上为增函数,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.下表给出一个等比数阵
12(  )(  )(  )a1j
36(  )(  )(  )a2j
(  )(  )(  )(  )(  )a3j
ai1ai2ai3ai4ai5aij
(  )(  )(  )(  )(  )
其中每行每列都是等比数列,aij
表示第i行第j列的数.
(1)写出a34的值并求出aij的计算公式;
(2)若数列{bn}满足bn=a2n+log2a2n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“x<1”是“log2x<0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设x,y满足约束条件:$\left\{\begin{array}{l}{3x-y-2≤0}\\{2x-y≥0}\\{x≥0,y≥0}\end{array}\right.$若目标函数z=ax+by(a>0,b>0)的最大值为2,则$\frac{a+b}{ab}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案