精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=x3-tx2+3x,若对于任意的a∈[2,4],b∈(4,6],函数f(x)在区间[a,b]上单调递减,则实数t的取值范围是(  )
A.(-∞,$\frac{37}{4}$]B.(-∞,5]C.[5,+∞)D.[$\frac{37}{4}$,+∞)

分析 由题意可得f′(x)≤0即3x2-2tx+3≤0在[2,6]上恒成立,由二次函数的性质可得不等式组.

解答 解:∵函数f(x)=x3-tx2+3x,f′(x)=3x2-2tx+3,
若对于任意的a∈[2,4],b∈(4,6],函数f(x)在区间[a,b]上单调递减,
则f′(x)≤0即3x2-2tx+3≤0在[2,6]上恒成立,
∴$\left\{\begin{array}{l}{f′(2)=12-4t+3≤0}\\{f′(6)=108-12t+3≤0}\end{array}\right.$,解得t≥$\frac{37}{4}$,
故选:D.

点评 本题主要考查函数的单调性和导数符号间的关系,二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+1与g(x)=x+m在[0,3]上是“关联函数”,则m的取值范围为(  )
A.(-3,+∞)B.(-3,-2]C.[-3,0]D.[-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设A={x|2x2+ax+2=0},2∈A,集合B={x|x2=1}.
(1)求a的值,并写出集合A的所有子集;
(2)若集合C={x|bx=1},且C⊆B,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若全集U={x∈N|1≤x≤7},集合A={1,2,3,5},B={2,3,4},则集合CUA∩CUB等于(  )
A.{ 2,3 }B.{ 1,5,6,7 }C.{ 6,7 }D.{ 1,5 }

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知平面向量$\vec a$,$\vec b$满足$\vec a$•($\vec a$+$\vec b$)=5,且|${\vec a}$|=2,|${\vec b}$|=1,则$\vec a$与$\vec b$夹角的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={-1,1},B={1,2},则A∪B=(  )
A.B.{-1,1}C.{1,2}D.{-1,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数:f(x)=-x3-3x2+(1+a)x+b(a<0,b∈R).
(1)令h(x)=f(x-1)-b+a+3,判断h(x)的奇偶性,并讨论h(x)的单调性;
(2)若g(x)=|f(x)|,设M(a,b)为g(x)在[-2,0]的最大值,求M(a,b)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),若椭圆C上的一动点到右焦点的最短距离为2-$\sqrt{2}$,且右焦点到直线x=$\frac{a}{c}$的距离等于短半轴的长.已知点P(4,0),过P点的直线l与椭圆C交于M,N两点.
(Ⅰ)求椭圆C的方程;         
(Ⅱ)求$\overrightarrow{OM}$•$\overrightarrow{ON}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若一个幂函数f(x)图象过$(2,\frac{1}{2})$点,则$f(\frac{1}{2})$=2.

查看答案和解析>>

同步练习册答案