精英家教网 > 高中数学 > 题目详情
16.已知向量$\vec a$=(1,2),$\vec b$=(1,0),$\vec c$=(3,4),若λ为实数,(λ$\vec a$+$\vec b}$)⊥$\vec c$,则λ的值为$-\frac{3}{11}$.

分析 由题意可得λ$\vec a$+$\vec b}$的坐标,利用(λ$\vec a$+$\vec b}$)⊥$\vec c$,数量积为0,代入数据可得关于λ的方程,解之可得.

解答 解:由题意可得λ$\vec a$+$\vec b}$=(1+λ,2λ)
∵(λ$\vec a$+$\vec b}$)⊥$\vec c$,∴(λ$\vec a$+$\vec b}$)•$\vec c$=0,
代入数据可得3(1+λ)+4×2λ=0,
解之可得λ=-$\frac{3}{11}$
故答案为:$-\frac{3}{11}$.

点评 本题考查平面向量数量积的运算,涉及向量的垂直于数量积的关系,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.直线l:3x+4y-5=0的单位法向量是$({\frac{3}{5},\frac{4}{5}})$或$({-\frac{3}{5},-\frac{4}{5}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在同一坐标系内,函数y=x+$\frac{1}{x}$和y=4sin$\frac{πx}{2}$的图象公共点的个数为(  )
A.6B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知PA是圆O的一条的切线,PB是圆经过圆心O的割线,N为PB与圆O的另一交点.
(1)过点A作PB的垂线AC,交PB于点M,交圆O于点C,连接BC,过点M作AB的平行线分别交BC于D,交PA于E,求证:DM=DB;
(2)若圆O的半径为3,NM=$\frac{1}{2}$MB,求PN.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,平面PAC⊥平面ABC,AC⊥BC,△PAC为等边三角形,PE∥BC,过BC作平面交AP,AE分别于点N,M,设$\frac{AM}{AE}$=$\frac{AN}{AP}$=λ.
(1)求证:MN∥平面ABC;
(2)求λ的值,使得平面ABC与平面MNC所成的锐二面角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x).若在(a,b)上,f″(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数“.现给出如下命题:
①区间(a,b)上的凸函数f(x)在其图象上任意一点(x,f(x))处的切线的斜率随x的增大而减小;
②函数f(x)=lnx在任意正实数区间(a,b)上都是凸函数;
③若函数f(x),g(x)都是区间(a,b)上的凸函数,则函数y=f(x)g(x)也是区间(a,b)上的凸函数;
④若在区间(a,b)上f″(x)<0恒成立,则对任意x1,x2∈(a,b)(x1≠x2)都有f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$,其中正确命题的序号是①②④(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出的新定义,若函数f(x)的定义域和值域均为[m,n],则称[m,n]为函数f(x)的保值闭区间,已知函数f(x)=ax(a>1)存在保值闭区间,则a的取值范围是(  )
A.(1,e)B.(1,eeC.(1,2e)D.(1,e${\;}^{\frac{1}{e}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a>b,c∈R,则下列不等式一定成立的(  )
A.a|c|≥bcB.|a|c≥bcC.a|c|≥b|c|D.|a|c≥b|c|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=ln({1+mx})+\frac{x^2}{2}-mx$,其中m>0.
(Ⅰ)当m=1时,求证:-1<x≤0时,$f(x)≤\frac{x^3}{3}$;
(Ⅱ)试讨论函数y=f(x)的零点个数.

查看答案和解析>>

同步练习册答案