精英家教网 > 高中数学 > 题目详情

【题目】如图,某市准备在道路的一侧修建一条运动比赛道,赛道的前一部分为曲线段,该曲线段是函数时的图象,且图象的最高点为.赛道的中间部分为长千米的直线跑道,且.赛道的后一部分是以为圆心的一段圆弧.

(1)的值和的大小;

(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,矩形的一边在道路上,一个顶点在半径上,另外一个顶点在圆弧上,且,求当“矩形草坪”的面积取最大值时的值.

【答案】(1);(2).

【解析】试题分析:

(1)由题意可得,故,从而可得曲线段的解析式为,令x=0可得,根据,得,因此(2)结合题意可得当“矩形草坪”的面积最大时,点在弧上,由条件可得“矩形草坪”的面积为,然后根据的范围可得当时,取得最大值.

试题解析

(1)由条件得.

.

∴曲线段的解析式为.

时,.

,

.

(2)由(1),可知.

又易知当“矩形草坪”的面积最大时,点在弧上,故.

,,“矩形草坪”的面积为

.

,

故当,即时,取得最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的可导函数,且满足f′(x)>f(x),对任意的正数a,下面不等式恒成立的是(
A.f(a)<eaf(0)
B.f(a)>eaf(0)
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x和所支出的维修费用y(单位:万元)有如下的统计资料:

使用年限x/年

2

3

4

5

6

维修费用y/万元

2.2

3.8

5.5

6.5

7.0

若由资料知y对x呈线性相关关系.试求:

(1)回归方程x+的系数.

(2)使用年限为10年时,试估计维修费用是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级举行一次知识竞赛活动,活动分为初赛和决赛两个阶段、现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.

分数(分数段)

频数(人数)

频率

[60,70)

0.16

[70,80)

22

[80,90)

14

0.28

[90,100)

合计

50

1


(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)决赛规则如下:参加决赛的每位同学依次口答4道小题,答对2道题就终止答题,并获得一等奖.如果前三道题都答错,就不再答第四题.某同学进入决赛,每道题答对的概率P的值恰好与频率分布表中不少于80分的频率的值相同. ①求该同学恰好答满4道题而获得一等奖的概率;
②记该同学决赛中答题个数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题。
(1)四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?
(2)设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣5|﹣|x﹣2|.
(1)若x∈R,使得f(x)≤m成立,求m的范围;
(2)求不等式x2﹣8x+15+f(x)≤0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 直径, 所在的平面, 是圆周上不同于的动点.

(1)证明:平面平面

(2)若,且当二面角的正切值为时,求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C极坐标方程: ,点P极坐标为 ,直线l过点P,且倾斜角为
(1)求曲线C的直角坐标方程及直线l参数方程;
(2)若直线l与曲线C交于A,B两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断函数的奇偶性;

(2)判断并证明))上的单调性;

(3)若对任意恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案