【题目】在直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C极坐标方程:
,点P极坐标为
,直线l过点P,且倾斜角为
.
(1)求曲线C的直角坐标方程及直线l参数方程;
(2)若直线l与曲线C交于A,B两点,求
.
【答案】
(1)解:∵曲线C极坐标方程:
,∴3ρ2+ρ2sin2θ=12,
∵ρ2=x2+y2,ρsinθ=y,
∴曲线C的直角坐标方程为3x2+4y2=12,即
=1.
∵点P极坐标为
,直线l过点P,且倾斜角为
.
∴点P的直角坐标为(3,
),
∴直线l参数方程为
(t为参数)
(2)解:把直线l参数方程
(t为参数)代入曲线C:3x2+4y2=12,
整理,得:
,
=4>0,
设方程的两根为t1,t2,则t1+t2=﹣
,t1t2=
,∴t1<0,t2<0,
∴
=|
|=|
|=
=
= ![]()
【解析】(1)曲线C极坐标方程转化为3ρ2+ρ2sin2θ=12,由ρ2=x2+y2,ρsinθ=y,能求出曲线C的直角坐标方程;由直线l过点P(3,
),且倾斜角为
,能求出直线l参数方程.(2)把直线l参数方程
(t为参数)代入曲线C:3x2+4y2=12,得:
,由此利用韦达定理,结合已知条件能求出
的值.
科目:高中数学 来源: 题型:
【题目】定义:已知函数
在
上的最小值为
,若
恒成立,则称函数
在
上具有“
”性质.
(
)判断函数
在
上是否具有“
”性质?说明理由.
(
)若
在
上具有“
”性质,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某市准备在道路
的一侧修建一条运动比赛道,赛道的前一部分为曲线段
,该曲线段是函数
,
时的图象,且图象的最高点为
.赛道的中间部分为长
千米的直线跑道
,且
.赛道的后一部分是以
为圆心的一段圆弧
.
![]()
(1)求
的值和
的大小;
(2)若要在圆弧赛道所对应的扇形
区域内建一个“矩形草坪”,矩形的一边在道路
上,一个顶点在半径
上,另外一个顶点
在圆弧
上,且
,求当“矩形草坪”的面积取最大值时
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.极坐标系中方程ρ2﹣4ρcosθ=0和ρ﹣4cosθ=0表示的是同一曲线
B.![]()
C.不等式|a+b|≥|a|﹣|b|等号成立的条件为ab≤0
D.在极坐标系中方程
表示的圆和一条直线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣2|x|.
(1)将函数f(x)写成分段函数;
(2)判断函数的奇偶性,并画出函数图象.
(3)若函数在[a, +∞)上单调,求a的范围。
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知实数x1 , x2 , x3 , x4 , x5满足0<x1<x2<x3<x4<x5
(1)求证不等式x12+x22+x32+x42+x52>x1x2+x2x3+x3x4+x4x5+x5x1
(2)随机变量X取值
的概率均为
,随机变量Y取值
的概率也均为
,比较DX与DY大小关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的方程为
,直线
的倾斜角为
且经过点
.
(1)以
为极点,
轴的正半轴为极轴建立极坐标系,求曲线
的极坐标方程;
(2)设直线
与曲线
交于两点
,
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com