精英家教网 > 高中数学 > 题目详情

【题目】定义:已知函数上的最小值为,若恒成立,则称函数上具有性质.

)判断函数上是否具有性质?说明理由.

)若上具有性质,求的取值范围.

【答案】(1)具有(2)

【解析】试题分析:(1)先根据二次函数性质求最小值,再根据定义判断是否具有性质,(2)先根据对称轴与定义区间位置关系求函数最小值,再根据定义列不等式,解不等式可得的取值范围.

试题解析:

对称轴,开口向上,

时,取得最小值为

∴函数上具有性质.

其图象的对称轴方程为

①当,即时,

若函数具有性质,则有总成立,即

②当,即时,

若函数具有性质,则有总成立,解得无解.

③当,即时,

若函数具有性质,

则有,解得无解.

综上所述,若上具有性质,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=2x3﹣9x2+12x+1的单调减区间是(
A.(1,2)
B.(2,+∞)
C.(﹣∞,1)
D.(﹣∞,1)和(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的可导函数,且满足f′(x)>f(x),对任意的正数a,下面不等式恒成立的是(
A.f(a)<eaf(0)
B.f(a)>eaf(0)
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x),若存在x0∈R,使f(x0)=x0 , 则称x0是f(x)的一个不动点.
(1)若函数f(x)=2x+ ﹣5,求此函数的不动点;
(2)若二次函数f(x)=ax2﹣x+3在x∈(1,+∞)上有两个不同的不动点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若存在实数a、b、c、d,满足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,则abcd的取值范围是(
A.(16,21)
B.(16,24)
C.(17,21)
D.(18,24)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求函数y=的值的程序框图如图所示.

(1)指出程序框图中的错误,并写出算法;

(2)重新绘制解决该问题的程序框图,并回答下面提出的问题.

要使输出的值为正数,输入的x的值应满足什么条件?

要使输出的值为8,输入的x值应是多少?

要使输出的y值最小,输入的x值应是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x和所支出的维修费用y(单位:万元)有如下的统计资料:

使用年限x/年

2

3

4

5

6

维修费用y/万元

2.2

3.8

5.5

6.5

7.0

若由资料知y对x呈线性相关关系.试求:

(1)回归方程x+的系数.

(2)使用年限为10年时,试估计维修费用是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级举行一次知识竞赛活动,活动分为初赛和决赛两个阶段、现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.

分数(分数段)

频数(人数)

频率

[60,70)

0.16

[70,80)

22

[80,90)

14

0.28

[90,100)

合计

50

1


(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)决赛规则如下:参加决赛的每位同学依次口答4道小题,答对2道题就终止答题,并获得一等奖.如果前三道题都答错,就不再答第四题.某同学进入决赛,每道题答对的概率P的值恰好与频率分布表中不少于80分的频率的值相同. ①求该同学恰好答满4道题而获得一等奖的概率;
②记该同学决赛中答题个数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C极坐标方程: ,点P极坐标为 ,直线l过点P,且倾斜角为
(1)求曲线C的直角坐标方程及直线l参数方程;
(2)若直线l与曲线C交于A,B两点,求

查看答案和解析>>

同步练习册答案