精英家教网 > 高中数学 > 题目详情
(理)已知函数f(x)=ax2+4(a为非零实数),设函数F(x)=f(x),x>0,-f(x),x<0.

(1)若f(-2)=0,求F(x)的表达式;

(2)在(1)的条件下,解不等式1≤|F(x)|≤2;

(3)设mn<0,m+n>0,试判断F(m)+F(n)能否大于0?

(文)杭州风景区有一家自行车租车公司,公司设有A、B、C三个营业站,顾客可以从任何一处营业站租车,并在任何一处营业站还车.根据统计发现租车处与还车处有如下的规律性:

①在A站租车者有30%在A站还车,20%在B站还车,50%在C站还车;

②在B站租车者有70%在A站还车,10%在B站还车,20%在C站还车;

③在C站租车者有40%在A站还车,50%在B站还车,10%在C站还车.

记P(XY)表示“某车由X站租出还至Y站的概率”,P(XY)P(YZ)表示“某车由X站租出还至Y站,再由Y站租出还至Z站的概率”.按以上约定的规则,

(1)求P(CC);

(2)求P(AC)P(CB);

(3)设某辆自行车从A站租出,求此车归还至某站再次出租后,回到A站的概率.

答案:(理)解:(1)∵f(-2)=0,∴4a+4=0,得a=-1,∴f(x)=-x2+4,F(x)=

(2)∵|F(-x)|=|F(x)|,∴|F(x)|是偶函数.故可以先求x>0的情况,当x>0时,由|F(2)|=0,故当0<x≤2时,解不等式1≤-x2+4≤2,得≤x≤;x>2时,解不等式1≤x2-4≤2,得≤x≤.

综合上述可知原不等式的解为

≤x≤≤x≤≤x≤≤x≤.

(3)∵f(x)=ax2+4,∴F(x)=∵mn<0,不妨设m>0,则n<0,

又m+n>0,∴m>-n>0.∴m2>n2.

∴F(m)+F(n)=am2+4-an2-4=a(m2-n2).∴当a>0时,F(m)+F(n)能大于0,当a<0时,F(m)+F(n)不能大于0.

(文)解:(1)P(CC)=0.1;

(2)P(AC)P(CB)=0.5×0.5=0.25;

(3)P=0.3×0.3+0.2×0.7+0.5×0.4=0.43.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网精英家教网(理)已知函数f(x)=
ln(2-x2)
|x+2|-2

(1)试判断f(x)的奇偶性并给予证明;
(2)求证:f(x)在区间(0,1)单调递减;
(3)如图给出的是与函数f(x)相关的一个程序框图,试构造一个公差不为零的等差数列
{an},使得该程序能正常运行且输出的结果恰好为0.请说明你的理由.
(文)如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判
断点O、G、H是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=
sin2x-(a-4)(sinx-cosx)+a
的定义域为{x|2kπ≤x≤2kπ+
π
2
,k∈Z}
,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•普陀区三模)(理)已知函数f(x)=
sinπxx∈[0,1]
log2011xx∈(1,+∞)
若满足f(a)=f(b)=f(c),(a、b、c互不相等),则a+b+c的取值范围是
(2,2012)
(2,2012)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•普陀区三模)(理)已知函数f(x)=
ln(2-x2)|x+2|-2

(1)试判断f(x)的奇偶性并给予证明;
(2)求证:f(x)在区间(0,1)单调递减;
(3)右图给出的是与函数f(x)相关的一个程序框图,试构造一个公差不为零的等差数列{an},使得该程序能正常运行且输出的结果恰好为0.请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•嘉定区一模)(理)已知函数f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)图象上两点.
(1)若x1+x2=1,求证:y1+y2为定值;
(2)设Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn关于n的解析式;
(3)对(2)中的Tn,设数列{an}满足a1=2,当n≥2时,an=4Tn+2,问是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
对一切n∈N*都成立?若存在,求出角α的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案