精英家教网 > 高中数学 > 题目详情
18.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosA(ccosB+bcosC)=a.
(I)求A;
(II)若△ABC的面积为$\frac{{\sqrt{3}}}{4}$,且c2+abcosC+a2=4,求a.

分析 (I)由正弦定理化简已知等式可得2cosAsinA=sinA,结合sinA≠0,可求cosA=$\frac{1}{2}$,结合范围A∈(0,π),可求A的值.
(II)由△ABC的面积为$\frac{{\sqrt{3}}}{4}$,求出bc,利用c2+abcosC+a2=4,得出3a2+b2+c2=8,结合余弦定理求a.

解答 解:(I)由正弦定理可知,2cosA(sinBcosC+sinCcosB)=sinA,
即2cosAsinA=sinA,
因为A∈(0,π),
所以sinA≠0,
所以2cosA=1,即cosA=$\frac{1}{2}$
又A∈(0,π),
所以A=$\frac{π}{3}$;
(II)∵△ABC的面积为$\frac{{\sqrt{3}}}{4}$,
∴$\frac{1}{2}bc×\frac{\sqrt{3}}{2}$=$\frac{{\sqrt{3}}}{4}$,∴bc=1
∵c2+abcosC+a2=4,∴3a2+b2+c2=8,
∵a2=b2+c2-bc
∴4a2=7,∴a=$\frac{\sqrt{7}}{2}$.

点评 本题主要考查了正弦定理,余弦定理,两角差的正弦函数公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.执行如图程序框图,输出的S为(  )
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{4}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=ex(x2+x+1),定义f1(x)=f'(x),f2(x)=[f1(x)]′,…,fn+1(x)=[fn(x)]′,n∈N.经计算:f1(x)=ex(x2+3x+2);f2(x)=ex(x2+5x+5);f3(x)=ex(x2+7x+10),…照此规律,则fn(x)=fn(x)=ex[x2+(2n+1)x+n2+1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数z满足:$\frac{{z(1+i){i^3}}}{1-i}=1-i$,则复数z的虚部为(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2016年10月21日,台风“海马”导致江苏、福建、广东3省11市51个县(市、区)189.9万人受灾,某调查小组调查了受灾某小区的100户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出频率分布直方图.
(Ⅰ)台风后居委会号召小区居民为台风重灾区捐款,小张调查的100户居民捐款情况如表所示,在表格空白处填写正确数字,并说明能否在犯错误的概率不超过0.05的前提下认为捐款数额超过或不超过500元和自身经济损失是否超过4000元有关?
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量受灾居民中,采用随机抽样的方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过4000元的人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列,期望E(ξ)和方差D(ξ).
经济损失不超过4000元经济损失超过4000元总计
捐款超过500元60
捐款不超过500元10
总计
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.由直线y=x+2上的点向圆(x-4)2+(y+2)2=1引切线,则切线长的最小值为(  )
A.$4\sqrt{2}$B.$\sqrt{31}$C.$\sqrt{33}$D.$4\sqrt{2}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-a$\frac{x-1}{x+1}$,a∈R.
(Ⅰ)讨论f(x)的单调区间;
(Ⅱ)当x∈(0,1)时,(x+1)lnx<a(x-1)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,A,B两点的坐标分别为(-2,0),(2,0),动点P满足:直线PA与直线PB的斜率之积为$-\frac{3}{4}$.
(Ⅰ)求动点P的轨迹E的方程;
(Ⅱ)过点A作两条互相垂直的直线l1,l2分别交曲线E于M,N两点,设l1的斜率为k(k>0),△AMN的面积为S,求$\frac{S}{k}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和Sn=2n+1-2,数列{bn}满足bn=an+an+1(n∈N*).
(1)求数列{bn}的通项公式;
(2)若cn=log2an(n∈N*),求数列{bn•cn}的前n项和Tn

查看答案和解析>>

同步练习册答案