精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=lnx-a$\frac{x-1}{x+1}$,a∈R.
(Ⅰ)讨论f(x)的单调区间;
(Ⅱ)当x∈(0,1)时,(x+1)lnx<a(x-1)恒成立,求a的取值范围.

分析 (Ⅰ)$f'(x)=\frac{1}{x}-\frac{2a}{{{{(x+1)}^2}}}=\frac{{{x^2}+2(1-a)x+1}}{{x{{(x+1)}^2}}}$.令g(x)=x2+2(1-a)x+1.按△=4(1-a)2-4≤0,△=4(1-a)2-4>0分别求解单调区间;
(Ⅱ)由(x+1)lnx<a(x-1),得(x+1)lnx-a(x-1)<0,即$lnx-a\frac{x-1}{x+1}<0$,即f(x)<0在x∈(0,1)上恒成立.根据(Ⅰ)按当a≤2,a>2分别讨论即可.

解答 解:(Ⅰ)定义域是(0,+∞),$f'(x)=\frac{1}{x}-\frac{2a}{{{{(x+1)}^2}}}=\frac{{{x^2}+2(1-a)x+1}}{{x{{(x+1)}^2}}}$.(1分)
令g(x)=x2+2(1-a)x+1.
当△=4(1-a)2-4≤0,即0≤a≤2时,g(x)≥0恒成立,即f'(x)≥0,
所以f(x)的单调增区间为(0,+∞);                                             (2分)
当△=4(1-a)2-4>0时,即a<0或a>2时,方程g(x)=0有两个不等的实根,${x_1}=a-1-\sqrt{{{(a-1)}^2}-1},{x_2}=a-1+\sqrt{{{(a-1)}^2}-1}$.(3分)
若a<0,由x1+x2=2(a-1)<0,x1x2=1>0得,x1<0,x2<0,
所以g(x)>0在(0,+∞)成立,即f'(x)>0,
所以f(x)的单调增区间为(0,+∞);             (4分)
若a>2,由x1+x2=2(a-1)>0,x1x2=1>0得,x1>0,x2>0,
由g(x)>0得x的范围是(0,x1),(x2,+∞),由g(x)<0得x的范围(x1,x2),
即f(x)的单调递增区间为(0,x1),(x2,+∞),f(x)的单调递减区间为(x1,x2).(5分)
综上所述,当a>2时,f(x)的单调递增区间为$({0,a-1-\sqrt{{{(a-1)}^2}-1}}),({a-1+\sqrt{{{(a-1)}^2}-1},+∞})$,
单调递减区间为$({a-1-\sqrt{{{(a-1)}^2}-1},a-1+\sqrt{{{(a-1)}^2}-1}})$;
当a≤2时,f(x)的单调递增区间为(0,+∞),无递减区间.(6分)
(Ⅱ)由(x+1)lnx<a(x-1),得(x+1)lnx-a(x-1)<0,
即$lnx-a\frac{x-1}{x+1}<0$,即f(x)<0在x∈(0,1)上恒成立.(7分)
由(Ⅰ)知当a≤2时,f(x)的单调递增区间为(0,+∞),又f(1)=0,(8分)
所以当x∈(0,1)时,f(x)<0恒成立.(9分)
由(Ⅰ)知当a>2时,f(x)在(0,x1),(x2,+∞)单调递增,在(x1,x2)单调递减,
且x1x2=1,得x1<1<x2,f(x1)>f(1)=0,不符合题意.(11分)
综上所述,a的取值范围是(-∞,2].(12分)

点评 本题考查了导数的综合应用,含参数二次函数的性质,函数不等式的恒成立问题,属于压轴题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.数列{an}的前n项和是Sn,a1=1,2Sn=an+1(n∈N+),则an=$\left\{\begin{array}{l}{1,n=1}\\{2{•3}^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知约束条件为$\left\{\begin{array}{l}2x-y-6≤0\\ x-y+2≥0\end{array}\right.$,若目标函数z=kx+y仅在交点(8,10)处取得最小值,则k的取值范围为(  )
A.(-2,-1)B.(-∞,-2)∪(-1,+∞)C.(-∞,-2)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosA(ccosB+bcosC)=a.
(I)求A;
(II)若△ABC的面积为$\frac{{\sqrt{3}}}{4}$,且c2+abcosC+a2=4,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在棱长为1的正方体ABCD-A1B1C1D1中,AC∩BD=O,E是线段B1C(含端点)上的一动点,则
①OE⊥BD1;   
②OE∥面A1C1D;
③三棱锥A1-BDE的体积为定值;
④OE与A1C1所成的最大角为90°.
上述命题中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,若输入三个数a=log36,b=log510,c=log714,则输出的结果为(  )
A.log36B.log510C.log714D.log26

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将一枚质地均匀的硬币连续抛掷n次,事件“至少有一次正面向上”的概率为$p({p≥\frac{15}{16}})$,则n的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$cos({\frac{2}{3}π-2θ})=-\frac{7}{9}$,则$sin({\frac{π}{6}+θ})$的值等于(  )
A.$\frac{1}{3}$B.$±\frac{1}{3}$C.$-\frac{1}{9}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,曲线C的方程为(x-2)2+y2=4,直线l的方程为x+$\sqrt{3}$y-12=0,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(Ⅰ)分别写出曲线C与直线l的极坐标方程;
(Ⅱ)在极坐标中,极角为θ(θ∈(0,$\frac{π}{2}$))的射线m与曲线C,直线l分别交于A、B两点(A异于极点O),求$\frac{|OA|}{|OB|}$的最大值.

查看答案和解析>>

同步练习册答案