精英家教网 > 高中数学 > 题目详情
5.在棱长为1的正方体ABCD-A1B1C1D1中,AC∩BD=O,E是线段B1C(含端点)上的一动点,则
①OE⊥BD1;   
②OE∥面A1C1D;
③三棱锥A1-BDE的体积为定值;
④OE与A1C1所成的最大角为90°.
上述命题中正确的个数是(  )
A.1B.2C.3D.4

分析 对4个选项,分别进行判断,即可得出结论.

解答 解:①利用BD1⊥平面AB1C,可得OE⊥BD1,正确;
②利用平面AB1C∥面A1C1D,可得OE∥面A1C1D,正确;
③三棱锥A1-BDE的体积=三棱锥E-A1BD的体积,底面为定值,E到平面的距离A1BD为定值,∴三棱锥A1-BDE的体积为定值,正确;
④E在B1处O,E与A1C1所成的最大角为90°,正确.
故选D.

点评 本题考查棱柱的结构特征,考查异面直线、线面垂直、的理解与应用,考查分析与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.我们知道:“平面中到定点等于定长的点轨迹是圆”拓展至空间:“空间中到定点的距离等于定长的点的轨迹是球”,类似可得:已知A(-1,0,0),B(1,0,0),则点集{P(x,y,z)||PA|-|PB|=1}在空间中的轨迹描述正确的是(  )
A.以A,B为焦点的双曲线绕轴旋转而成的旋转曲面
B.以A,B为焦点的椭球体
C.以A,B为焦点的双曲线单支绕轴旋转而成的旋转曲面
D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.袋中装有除颜色外形状大小完全相同的6个小球,其中有4个编号为1,2,3,4的红球,2个编号为A、B的黑球,现从中任取2个小球.
(Ⅰ)求所取取2个小球都是红球的概率;
(Ⅱ)求所取的2个小球颜色不相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2016年10月21日,台风“海马”导致江苏、福建、广东3省11市51个县(市、区)189.9万人受灾,某调查小组调查了受灾某小区的100户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出频率分布直方图.
(Ⅰ)台风后居委会号召小区居民为台风重灾区捐款,小张调查的100户居民捐款情况如表所示,在表格空白处填写正确数字,并说明能否在犯错误的概率不超过0.05的前提下认为捐款数额超过或不超过500元和自身经济损失是否超过4000元有关?
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量受灾居民中,采用随机抽样的方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过4000元的人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列,期望E(ξ)和方差D(ξ).
经济损失不超过4000元经济损失超过4000元总计
捐款超过500元60
捐款不超过500元10
总计
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为调查我市居民对“文明出行”相关规定的了解情况,某媒体随机选取了30名行人进行问卷调查,将他们的年龄整理后分组,制成下表:
年龄(岁)(12,22](22,32](32,42](42,52](52,62](62,72]
频数m3754n
己知从中任选一人,年龄在(12,22]的频率为0.3
(I)求m,n的值;
(II)通过问卷得知,参与调查的52岁以上的两个组中,了解相关规定的人各占$\frac{1}{2}$.现从这两个组中任选2人,求选取的2人都了解相关规定的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-a$\frac{x-1}{x+1}$,a∈R.
(Ⅰ)讨论f(x)的单调区间;
(Ⅱ)当x∈(0,1)时,(x+1)lnx<a(x-1)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某市高二年级学生进行数学竞赛,竞赛分为初赛和决赛,规定成绩在110分及110分以上的学生进入决赛,110分以下的学生则被淘汰,现随机抽取500名学生的初赛成绩按[30,50),[50,70),[70,90),[90,110),[110,130),[130,150]做成频率副本直方图,如图所示:(假设成绩在频率分布直方图中各段是均匀分布的)
(1)求这500名学生中进入决赛的人数,及进入决赛学生的平均分(结果保留一位小数);
(2)用频率估计概率,在全市进入决赛的学生中选取三人,其中成绩在[130,150]的学生数为X,试写出X的分布列,并求出X的数学期望及方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:
B餐厅分数频数分布表
分数区间频数
[0,10)2
[10,20)3
[20,30)5
[30,40)15
[40,50)40
[50,60]35
定义学生对餐厅评价的“满意度指数”如下:
分数[0,30)[30,50)[50,60]
满意度指数012
(Ⅰ)在抽样的100人中,求对A餐厅评价“满意度指数”为0的人数;
(Ⅱ)从该校在A,B两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A餐厅评价的“满意度指数”比对B餐厅评价的“满意度指数”高的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若2x=10,则x-log25的值为1.

查看答案和解析>>

同步练习册答案