精英家教网 > 高中数学 > 题目详情
17.若2x=10,则x-log25的值为1.

分析 根据对数的定义和对数的运算性质即可求出.

解答 解:2x=10,
则x=log210
则x-log25=log210-log25=log22=1,
故答案为:1

点评 本题考查了对数的定义和对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在棱长为1的正方体ABCD-A1B1C1D1中,AC∩BD=O,E是线段B1C(含端点)上的一动点,则
①OE⊥BD1;   
②OE∥面A1C1D;
③三棱锥A1-BDE的体积为定值;
④OE与A1C1所成的最大角为90°.
上述命题中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a,b≠0,则“a>b”是“$\frac{1}{a}<\frac{1}{b}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设xy<0,则$\frac{y}{x}$+$\frac{x}{y}$的取值范围是(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=(2a-1)x-$\frac{1}{2}$cos2x-a(sinx+cosx)在[0,$\frac{π}{2}$]上单调递增,则实数a的取值范围为(  )
A.(-∞,$\frac{1}{3}$]B.[$\frac{1}{3}$,1]C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,曲线C的方程为(x-2)2+y2=4,直线l的方程为x+$\sqrt{3}$y-12=0,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(Ⅰ)分别写出曲线C与直线l的极坐标方程;
(Ⅱ)在极坐标中,极角为θ(θ∈(0,$\frac{π}{2}$))的射线m与曲线C,直线l分别交于A、B两点(A异于极点O),求$\frac{|OA|}{|OB|}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)过点$({1\;,\;\frac{3}{2}})$,两个焦点为F1(-1,0)和F2(1,0).圆O的方程为x2+y2=a2
(1)求椭圆C的标准方程;
(2)过F1且斜率为k(k>0)的动直线l与椭圆C交于A、B两点,与圆O交于P、Q两点(点A、P在x轴上方),当|AF2|,|BF2|,|AB|成等差数列时,求弦PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l:x+$\sqrt{2}y=4\sqrt{2}$与椭圆C:mx2+ny2=1(n>m>0)有且只有一个公共点$M[{2\sqrt{2},2}]$.
(1)求椭圆C的方程;
(2)设椭圆C的左、右顶点分别为A,B,O为坐标原点,动点Q满足QB⊥AB,连接AQ交椭圆于点P,求$\overrightarrow{OQ}•\overrightarrow{OP}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若命题“?x∈(0,+∞),x+$\frac{1}{x}$≥m”是假命题,则实数m的取值范围是(2,+∞).

查看答案和解析>>

同步练习册答案