精英家教网 > 高中数学 > 题目详情
3.由直线y=x+2上的点向圆(x-4)2+(y+2)2=1引切线,则切线长的最小值为(  )
A.$4\sqrt{2}$B.$\sqrt{31}$C.$\sqrt{33}$D.$4\sqrt{2}-1$

分析 要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,-2)到直线的距离m,求出m,由勾股定理可求切线长的最小值.

解答 解:要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,
此最小值即为圆心(4,-2)到直线的距离m,
由点到直线的距离公式得 m=$\frac{|4+2+2|}{\sqrt{2}}$=4$\sqrt{2}$,
由勾股定理求得切线长的最小值为$\sqrt{32-1}$=$\sqrt{31}$.
故选B.

点评 本题考查直线和圆的位置关系,点到直线的距离公式、勾股定理得应用.解题的关键是理解要使切线长最小,必须直线y=x+2上的点到圆心的距离最小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设集合A={x|$\frac{2}{x-1}$≥1},B={y|y=log2x,0<x≤4},则A∩B=(  )
A.B.(1,2]C.(-∞,1)D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线Γ:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1({a>0,b>0})$的上焦点为F1(0,c)(c>0),下焦点为F2(0,-c)(c>0),过点F1作圆x2+y2-$\frac{2c}{3}y+\frac{a^2}{9}$=0的切线与圆相切于点D,与双曲线下支交于点M,若MF2⊥MF1,则双曲线Γ的渐进线方程为(  )
A.4x±y=0B.x±4y=0C.2x±y=0D.x±2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,已知椭圆C1:$\frac{x^2}{4}+{y^2}=1$,曲线C2:y=x2-1与y轴的交点为M,过坐标原点O的直线l与C2相交于A,B两点,直线MA,MB分别与C1相交于D,E两点,则$\overrightarrow{ME}•\overrightarrow{MD}$的值是(  )
A.正数B.0C.负数D.皆有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosA(ccosB+bcosC)=a.
(I)求A;
(II)若△ABC的面积为$\frac{{\sqrt{3}}}{4}$,且c2+abcosC+a2=4,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某市房产契税标准如下:
购房总价(万)(0,200](200,400](400,+∞)
税率1%1.5%3%
从该市某高档住宅小区,随机调查了一百户居民,获得了他们的购房总额数据,整理得到了如下的频率分布直方图:

(Ⅰ)假设该小区已经出售了2000套住房,估计该小区有多少套房子的总价在300万以上,说明理由.
(Ⅱ)假设同组中的每个数据用该组区间的右端点值代替,估计该小区购房者缴纳契税的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,若输入三个数a=log36,b=log510,c=log714,则输出的结果为(  )
A.log36B.log510C.log714D.log26

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=tan(x+\frac{π}{4})$.
(Ⅰ)求f(x)的定义域;
(Ⅱ)设β∈(0,π),且$f(β)=2cos(β-\frac{π}{4})$,求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若对圆(x-1)2+(y-1)2=1上任意一点P(x,y),|3x-4y+a|+|3x-4y-9|的取值与x,y无关,则实数a的取值范围是(  )
A.a≤-4B.-4≤a≤6C.a≤-4或a≥6D.a≥6

查看答案和解析>>

同步练习册答案