精英家教网 > 高中数学 > 题目详情
设a>1,b>1,若ab=e2,则s=blna-2e的最大值为
 
考点:函数的最值及其几何意义
专题:函数的性质及应用
分析:由ab=e2,得lna+lnb=2为定值,令t=blna,可得lnt=lnalnb≤(
lna+lnb
2
)2
=1,仅当a=b=e时等号成立,即可求出s=blna-2e的最大值.
解答: 解:∵a>1,b>1,
∴lna>0,lnb>0,
由ab=e2,得lna+lnb=2为定值,
令t=blna,、
∴lnt=lnalnb≤(
lna+lnb
2
)2
=1仅当a=b=e时等号成立,
∴lnt≤1,
∴t≤e,
∴s=blna-2e≤-e,即s=blna-2e的最大值为-e.
故答案为:-e.
点评:本题考查函数的最值,考查基本不等式的运用,正确换元是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在等腰Rt△AOB中,OA=OB=1,
AB
=4
AC
,则
OC
•(
OB
-
OA
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

依据三角函数线,做出如下四个判断:①sin
π
6
=sin
6
;②cos
π
4
=cos(-
π
4
);③tan
π
8
>tan
8
;④sin
5
>sin
5
,其中判断正确的有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

现有4枚完全相同的硬币,每个硬币都分正反两面,把4枚硬币摆成一摞,满足相邻两枚硬币的正面与正面不相对,不同的摆法有
 
 种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非负实数x,y满足
x+y≤4
x-y≤1
,若实数k满足y+1=k(x+1),则(  )
A、k的最小值为1,k的最大值为
5
7
B、k的最小值为
1
2
,k的最大值为
5
7
C、k的最小值为
1
2
,k的最大值为5
D、k的最小值为
5
7
,k的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=∫12(3x2-2x)dx,则二项式(ax2-
1
x
6展开式中的第6项的系数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为棱形,PA⊥底面ABCD,∠ABC=60°.E,F,M分别是BC,CD,PB的中点.
(1)证明:AB⊥MF;
(2)若PA=BA,求二面角E-MF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x+1|-b|2x-4|(a,b∈R)
(Ⅰ)当a=1,b=
1
2
时,解不等式f(x)≤0
(Ⅱ)当b=1时,若函数f(x)既存在最小值,也存在最大值.求所有满足条件的实数a的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图展示了一个由区间(0,1)到实数集R的映射过程;区间(0,1)中的实数m对应数轴上的点M,如图①;将线段AB围成一个圆,使两端点A、B恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图③.图③中直线AM与x轴交于点N(n,0),则m的象就是n,记作f(m)=n.
(1)方程f(x)=0的解是
 

(2)下列说法中正确命题的序号是
 
.(填出所有正确命题的序号)
①f(
1
4
)=1;②f(x)是奇函数;③f(x)在定义域上单调递增;④f(x)的图象关于点(
1
2
,0)对称;⑤f(x)>
3
的解集是(
2
3
,1).

查看答案和解析>>

同步练习册答案