数学英语物理化学 生物地理
数学英语已回答习题未回答习题题目汇总试卷汇总练习册解析答案
已知定义在上的偶函数为常数,
(1)求的值;
(2)用单调性定义证明在上是增函数;
(3)若关于的方程在上有且只有一个实根,求实数的取值范围.
【解析】因为最大值为2,所以A=2
因为则或者则
或
所以距离最短为-----------4分
若对恒成立,则,所以,.由,(),可知,即,所以,代入,得,-------------10分
所以单调递增区间为-----------12分
科目:高中数学 来源: 题型:
双曲线C的左右焦点分别为、,且恰为抛物线的焦点,设双曲线C与该抛物线的一个交点为A,若是以为底边的等腰三角形,则双曲线C的离心率为 。
如果,,,那么的值为 ( )
A. B.
C. D.
为得到函数的图像,只需将函数的图像 ( )
A.向左平移个长度单位 B. 向右平移个长度单位
C.向左平移个长度单位 D. 向右平移个长度单位
若是两个非零向量,且,则与的夹角的 取值范围是______________________
已知向量a=(1,),b=(3,m).若向量b在a方向上的投影为3,则实数m=( )
A.2 B. C.0 D.-
已知直线上存在点满足则实数的取值范围为( )
A.(-,) B.[-,] C.(-,) D.[-,]
“因为指数函数y=ax是增函数(大前提),而y=x是指数函数(小前提),所以函数y=x是增函数(结论)”,上面推理的错误在于 错误导致结论错.
已知数列满足,.
(1)求证:数列是等比数列;
(2)设,求证:当,时,.
国际学校优选 - 练习册列表 - 试题列表
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区