精英家教网 > 高中数学 > 题目详情

【题目】若有平面,则下列命题中真命题的序号有________.1)过点且垂直于的直线平行于;(2)过点且垂直于的平面垂直于;(3)过点且垂直于的直线在内;(4)过点且垂直于的直线在.

【答案】1)(2)(3

【解析】

由线面平行的判定定理判断(1),由面面垂直的判定定理判断(2),由面面垂直的性质定理判断(3),由线线的位置关系判断(4).

1)过点且垂直于的直线为,设在平面内与交线垂直的直线为,因为,所以,所以,又,所以,所以,而,所以,(1)正确;

(2)过点且垂直于的平面为,设,则,又,所以,所以,(2)正确;

(3)过点且垂直于的直线为,在平面内过作直线,因为,所以,又,且都过点,所以重合,所以.(3)正确;

(4)(2)中平面内过点的所有直线都与垂直,这些直线中只有一条在平面内,其余直线都不在内,(4)错误.

故答案为:(1)(2)(3).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为等边三角形,PQ依次为ACAB上的点,且线段PQ分为面积相等的两部分,设

1)用解析式将t表示成x的函数;

2)用解析式将y表示成x的函数;

3)求y的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】著名数学家华罗庚先生曾说过:“数缺形时少直观,形缺数时难入微数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,我们经常用函数的图象来研究函数的性质,也经常用函数的解析式来琢磨函数的图象的特征,如某体育品牌的LOGO,可抽象为如图所示的轴对称的优美曲线,下列函数中,其图象大致可“完美”局部表达这条曲线的函数是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像是由函数的图像经如下变换得到:先将图像上所有点的纵坐标伸长到原来的2倍横坐标不变,再将所得到的图像向右平移个单位长度.

求函数的解析式,并求其图像的对称轴方程;

已知关于的方程内有两个不同的解

1求实数m的取值范围;

2证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】划船运动员8人,其中3人只会划右舷,2人只会划左舷,3人左右舷都会划,现在要从这8人中选6个人,3个划右舷,3个划左舷,共有多少种选法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面平面.求:

1所成角;

2与平面所成角;

3)二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(注意:在试题卷上作答无效)

已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:

方案甲:逐个化验,直到能确定患病动物为止;

方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.

求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

按照某学者的理论,假设一个人生产某产品单件成本为元,如果他卖出该产品的单价为元,则他的满意度为;如果他买进该产品的单价为元,则他的满意度为.如果一个人对两种交易(卖出或买进)的满意度分别为,则他对这两种交易的综合满意度为.

现假设甲生产AB两种产品的单件成本分别为12元和5元,乙生产AB两种产品的单件成本分别为3元和20元,设产品AB的单价分别为元和元,甲买进A与卖出B的综合满意度为,乙卖出A与买进B的综合满意度为

(1)关于的表达式;当时,求证:=

(2),当分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)(2)中最大的综合满意度为,试问能否适当选取的值,使得同时成立,但等号不同时成立?试说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lnxsinx,记fx)的导函数为f'x).

1)若hx)=axf'x)是(0,+∞)上的单调递增函数,求实数a的取值范围;

2)若x0,2π),试判断函数fx)的极值点个数,并说明理由.

查看答案和解析>>

同步练习册答案