精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C)的一个焦点为,点C.

1)求椭圆C的方程;

2)过点且斜率不为0的直线l与椭圆C相交于MN两点,椭圆长轴的两个端点分别为相交于点Q,求证:点Q在某条定直线上.

【答案】1;(2)证明见解析.

【解析】

1)椭圆C的两焦点分别为,由,可求得的值,结合椭圆的定义,可求得的值,再结合,可求出的值,进而可得到椭圆C的方程;

2)设l方程为,联立,消去得到关于的一元二次方程,设,可表示出的方程,联立两直线方程,并结合韦达定理,可证明点Q在某条定直线上.

1)依题意,椭圆C的两焦点分别为

所以,即

,所以

故椭圆C的方程为.

2)设l的方程为

联立,得

,则

.

的方程为的方程为

联立两直线方程得

因为,所以

整理得.

故点Q在定直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图为我国数学家赵爽3世纪初在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则区域涂色不相同的概率为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,且,椭圆经过点.

1)求椭圆的方程;

2)直线过椭圆右顶点,交椭圆于另一点,点在直线上,且.,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四边形为直角梯形,上一点,的中点,且,现将梯形沿折叠(如图2),使平面平面.

1)求证:平面平面.

2)能否在边上找到一点(端点除外)使平面与平面所成角的余弦值为?若存在,试确定点的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:

组别

2

3

5

15

18

12

0

5

10

10

7

13

(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?

(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.

①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;

②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:

红包金额(单位:元)

10

20

概率

现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国大学先修课程,是在高中开设的具有大学水平的课程,旨在让学有余力的高中生早接受大学思维方式、学习方法的训练,为大学学习乃至未来的职业生涯做好准备.某高中开设大学先修课程已有两年,两年共招收学生2000人,其中有300人参与学习先修课程,两年全校共有优等生200人,学习先修课程的优等生有60人.这两年学习先修课程的学生都参加了考试,并且都参加了某高校的自主招生考试(满分100分),结果如下表所示:

分数

人数

20

55

105

70

50

参加自主招生获得通过的概率

0.9

0.8

0.6

0.5

0.4

(1)填写列联表,并画出列联表的等高条形图,并通过图形判断学习先修课程与优等生是否有关系,根据列联表的独立性检验,能否在犯错误的概率不超过0.01的前提下认为学习先修课程与优等生有关系?

优等生

非优等生

总计

学习大学先修课程

没有学习大学先修课程

总计

(2)已知今年有150名学生报名学习大学先修课程,以前两年参加大学先修课程学习成绩的频率作为今年参加大学先修课程学习成绩的概率.

①在今年参与大学先修课程的学生中任取一人,求他获得某高校自主招生通过的概率;

②设今年全校参加大学先修课程的学生获得某高校自主招生通过的人数为,求.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019101日,庆祝中华人民共和国成立70周年大会、阅兵式、群众游行在北京隆重举行,这次阅兵编59个方(梯)队和联合军乐团,总规模约1.5万人,各型飞机160余架、装备580余套,是近几次阅兵中规模最大的一次.某机构统计了观看此次阅兵的年龄在30岁至80岁之间的100个观众,按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

1)求的值及这100个人的平均年龄(同一组中的数据用该组区间的中点值为代表);

2)用分层抽样的方法在年龄为的人中抽取5人,再从抽取的5人中随机抽取2人接受采访,求接受采访的2人中年龄在的恰有1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为双曲线的左、右焦点,点P是以为直径的圆与C在第一象限内的交点,若线段的中点QC的渐近线上,则C的两条渐近线方程为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;

(2)设点的极坐标为,点在曲线上,求面积的最大值.

查看答案和解析>>

同步练习册答案