【题目】某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:
组别 |
|
|
|
|
|
|
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 10 | 7 | 13 |
(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的
列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.
①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;
②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:
红包金额(单位:元) | 10 | 20 |
概率 |
|
|
现某市民要参加此次问卷调查,记
(单位:元)为该市民参加间卷调查获得的红包金额,求
的分布列及数学期望.
附表及公式:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)不能;(2) ①
;②分布列见解析,
.
【解析】
(1)根据题目所给的数据可求2×2列联表即可;计算K的观测值K2,对照题目中的表格,得出统计结论.(2)由相互独立事件的概率可得男“环保达人”又有女“环保达人”的概率:P=1﹣(
)3﹣(
)3
,解出X的分布列及数学期望E(X)
即可;
(1)由图中表格可得
列联表如下:
非“环保关注者” | 是“环保关注者” | 合计 | |
男 | 10 | 45 | 55 |
女 | 15 | 30 | 45 |
合计 | 25 | 75 | 100 |
将
列联表中的数据代入公式计算得K”的观测值
,
所以在犯错误的概率不超过0. 05的前提下,不能认为是否为“环保关注者”与性别有关.
(2)视频率为概率,用户为男“环保达人”的概率为
.为女“环保达人”的概率为
,
①抽取的3名用户中既有男“环保达人”又有女“环保达人”的概率为
;
②
的取值为10,20,30,40.
,
,
,
所以
的分布列为
| 10 | 20 | 30 | 40 |
|
|
|
|
|
.
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照
分成9组,制成了如图所示的频率分布直方图.
(1)求直方图的
的值;
(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.
(3)估计居民月用水量的中位数.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左右顶点是双曲线
的顶点,且椭圆
的上顶点到双曲线
的渐近线的距离为
。
(1)求椭圆
的方程;
(2)若直线
与
相交于
两点,与
相交于
两点,且
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响,我校随机抽取100名学生,对学习成绩和学案使用程度进行了调查,统计数据如表所示:
![]()
已知随机抽查这100名学生中的一名学生,抽到善于使用学案的学生概率是0.6.
![]()
参考公式:
,其中
.
(1)请将上表补充完整(不用写计算过程);
(2)试运用独立性检验的思想方法有多大的把握认为学生的学习成绩与对待学案的使用态度有关?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某公司为郑州园博园生产某特许商品,该公司年固定成本为10万元,每生产千件需另投入2 .7万元,设该公司年内共生产该特许商品工x千件并全部销售完;每千件的销售收入为R(x)万元,
且
,
(I)写出年利润W(万元〉关于该特许商品x(千件)的函数解析式;
〔II〕年产量为多少千件时,该公司在该特许商品的生产中所获年利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
的图象关于直线
对称,则正确的选项是( )
①.函数
为奇函数
②.函数
在
上单调递增
③.若
,则
的最小值为![]()
④.函数
的图象向右平移
个单位长度得到函数
的图象
A.①③B.①④C.①②③D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某专营店经销某商品,当售价不高于10元时,每天能销售100件,当价格高于10元时,每提高1元,销量减少3件,若该专营店每日费用支出为500元,用x表示该商品定价,y表示该专营店一天的净收入(除去每日的费用支出后的收入).
(1)把y表示成x的函数;
(2)试确定该商品定价为多少元时,一天的净收入最高?并求出净收入的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),直线
的参数方程为
(
为参数),且直线
与曲线
交于
两点,以直角坐标系的原点为极点,以
轴的正半轴为极轴建立极坐标系.
(1)求曲线
的极坐标方程;
(2) 已知点
的极坐标为
,求
的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若
,求曲线
在点
处的切线;
(2)若函数
在其定义域内为增函数,求正实数
的取值范围;
(3)设函数
,若在
上至少存在一点
,使得
成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com