精英家教网 > 高中数学 > 题目详情
已知一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图所示,大致画出它的直观图,并求出它的表面积和体积.
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:由该棱柱的三视图可知,该棱柱是正三棱柱,其中高是4,底面边长是6,再由表面积、体积公式即可得出答案.
解答: 解:由该棱柱的三视图可知,该棱柱是高是4,底面边长是6的正三棱柱,
则棱柱的底面积是
1
2
×
3
2
×6×6
=9
3
,每个侧面面积是4×6=24
所以该三棱柱的表面积为2×9
3
+24×3=72+18,
V=9
3
×4=36
3
点评:本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是本棱柱的体积.三视图的投影规则是:“主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知不重合的平面α、β和不重合的直线m、n,给出下列命题:
①m∥n,n?α⇒m∥α;
②m∥n,n?α⇒m与α不相交;
③α∩β=m,n∥α,n∥β⇒n∥m;
④α∥β,m∥β,m?α⇒m∥α;
⑤m∥α,n∥β,m∥n⇒α∥β;
⑥m?α,n?β,α⊥β⇒m⊥n;
⑦m⊥α,n⊥β,α与β相交⇒m与n相交;
⑧m⊥n,n?β,m?β⇒m⊥β;
⑨α⊥β,a?α,b?β,b⊥a⇒b⊥α.
其中正确的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

某工程机械厂根据市场要求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产这两种型号的挖掘机,所生产的这两种型号的挖掘机可全部售出,此两种型号挖掘机的生产成本和售价如下表所示:
型号AB
成本(万元/台)200240
售价(万元/台)250300
(1)该厂对这两种型号挖掘机有几种生产方案?
(2)该厂如何生产获得最大利润?
(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂如何生产可以获得最大利润?(注:利润=售价-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

设S(x)=(x-x12+(x-x22+…+(x-xn2,其中x1,x2,x3,…,xn均为已知常数.
(Ⅰ)当x取何值时,S(x)取得极小值;
(Ⅱ)已知当n=2时,S(x)≥
1
2
恒成立,且f(x)=a(x-1)+(x2-x)ex当f(|x1-x2|)≥0恒成立时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且满足an=2-Sn(n∈N*).
(Ⅰ)求a1,a2,a3,a4的值并写出其通项公式;
(Ⅱ)设bn=nan,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是定义在(0,+∞)上的增函数,f(xy)=f(x)+f(y)
(1)证明:f(
x
y
)=f(x)-f(y)
(2)已知f(3)=1且f(a)>f(a-1)+2,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=logax(O<a且a≠1)的图象过点(4,2)
(1)求a的值;
(2)若g(x)=f(1-x)+f(1+x),求g(x)的解析式及定义域;
(3)求g(x)单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ln(x+m)+n的图象在点(1,f(1))处的切线方程是y=x-1,函数g(x)=ax2+bx(a,b∈R,a≠0)在x=2处取极值-2.
(Ⅰ)求函数f(x),g(x)的解析式;
(Ⅱ)若函数y=f(x+1)-g′(x)(其中g′(x)是g(x)的导函数)在区间(t,t+
1
2
)(t>-1)上没有单调性,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
x3+
a
2
x2+bx+1.
(Ⅰ)(ⅰ)若b=2时,f(x)在R上单调递增,求实数a的取值范围;
(ⅱ)若对任意a∈[1,+∞),存在x∈(2,3),使得f(x)>0,求实数b的取值范围;
(Ⅱ)已知函数f(x)有两个不同的极值点x1,x2(x1<x2),存在实数n,有n<x1<x2<n+1,f′(x)为f(x)的导函数.求证:max{min{f′(n),f′(n+1)},
1
4
}=
1
4
.(其中min{a,b}指a,b中的最小值,max{a,b}指a,b中的最大值).

查看答案和解析>>

同步练习册答案