精英家教网 > 高中数学 > 题目详情
鑫隆房地产公司用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=
为了楼房每平方米的平均综合费最少,该楼房应建为15层。

试题分析:设楼房每平方米的平均综合费为元,则
 3分
方法一: ,   5分 
 得   7分
 时, ;当 时,,
因此 当时,取最小值 10分
(方法二:, 8分
当且仅当时成立,即时, 10分)

答:为了楼房每平方米的平均综合费最少,该楼房应建为15层。 12分
点评:与函数有关的应用题,经常涉及物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题。解答这类问题的关键是确切建立相应的函数解析式,然后应用函数、方程和不等式的有关知识加以综合解答。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数是R上的奇函数,若对于,都有时,的值为  
A.B.C.1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数的定义域为,且满足为 奇函数,为偶函数,则下列说法中一定正确的有        
(1)的图像关于直线对称
(2)的周期为 
(3)  
(4)上只有一个零点

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若函数有最 大值,求实数的值
(2)解不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数规定:给出一个实数,赋值,若,则继续赋值, ,以此类推,若,则,否则停止赋值,如果得到称为赋值了.已知赋值了次后停止,则的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则,有的大小关系为
A.B.
C.D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数).
(1)若函数处取得极大值,求的值;
(2)时,函数图象上的点都在所表示的区域内,求的取值范围;
(3)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数,在上是减少的,则的取值范围是    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A、B两地的路程为240千米.某经销商每天都要用汽车或火车将吨保鲜品一次 性由A地运往B地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.
现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:
货运收费项目及收费标准表
运输工具
运输费单价:元/(吨•千米)
冷藏费单价:元/(吨•时)
固定费用:元/次
汽车
2
5
200
火车
1.6
5
2280
          
(1)汽车的速度为       千米/时,火车的速度为       千米/时:
(2)设每天用汽车和火车运输的总费用分别为(元)和(元),分别求的函数关系式(不必写出的取值范围),及为何值时(总费用=运输费+冷藏费+固定费用)
(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?

查看答案和解析>>

同步练习册答案