精英家教网 > 高中数学 > 题目详情
已知函数是R上的奇函数,若对于,都有时,的值为  
A.B.C.1D.2
B

试题分析:根据函数的奇偶性可得f(-2013)=-f(2013),根据函数的周期性可得f(2012)=f(0),f(2013)=f(1),结合x∈[0,2)时,f(x)=log2(x+1),代入可得答案.解:∵函数f(x)是定义在R上的奇函数,∴f(-2013)=-f(2013),又∵x≥0,都有f(x+2)=f(x),,故f(2012)=f(0),f(2013)=f(1),又由当x∈[0,2)时,f(x)=log2(x+1),,∴f(2012)+f(-2013)=f(2012)-f(2013)=f(0)-f(1)=log21-log22=0-1=-1,故选C
点评:本题考查的知识点是对数函数图象与性质的综合应用,函数奇偶性的性质,其中熟练掌握函数的奇偶性和周期性是解答的关键
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

将52名志愿者分成A,B两组参加义务植树活动,A组种植150捆白杨树苗,B组种植200捆沙棘树苗.假定A,B两组同时开始种植.
(1)根据历年统计,每名志愿者种植一捆白杨树苗用时小时,种植一捆沙棘树苗用时小时.应如何分配A,B两组的人数,使植树活动持续时间最短?
(2)在按(1)分配的人数种植1小时后发现,每名志愿者种植一捆白杨树苗用时仍为小时,而每名志愿者种植一捆沙棘树苗实际用时小时,于是从A组抽调6名志愿者加入B组继续种植,求植树活动所持续的时间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

鑫隆房地产公司用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,与函数相同的是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=,g(x)=2|x|+a.
(1)当a=0时,解不等式f(x)≥g(x);
(2)若存在x∈ R,使得f(x)≥g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为奇函数,,当时,,则        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

偶函数满足,当时, ,则关于的方程上解的个数是( )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若为定义域上的单调增函数,求实数的取值范围;
(Ⅱ)当时,求函数的最大值;
(Ⅲ)当时,且,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的定义域为,当时,,且对于任意的,恒有成立.
(1)求
(2)证明:函数上单调递增;
(3)当时,
①解不等式
②求函数上的值域.

查看答案和解析>>

同步练习册答案