精英家教网 > 高中数学 > 题目详情
15.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由4个全等的直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值为(  )
A.$-\frac{7}{25}$B.$\frac{7}{25}$C.$-\frac{12}{25}$D.$\frac{12}{25}$

分析 由图形可知三角形的直角边长度差为1,面积为6,列方程组求出直角边得出sinθ,代入二倍角公式即可得出答案.

解答 解:由题意可知小正方形的边长为1,大正方形边长为5,直角三角形的面积为6,
设直角三角形的直角边分别为a,b且a<b,则b=a+1,
∴直角三角形的面积为S=$\frac{1}{2}$ab=6,
联立方程组可得a=3,b=4,
∴sinθ=$\frac{3}{5}$,cos2θ=1-2sin2θ=$\frac{7}{25}$.
故选:B.

点评 本题考查了解直角三角形,三角恒等变换,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知点A(2,2)和B(-1,3),直线y=kx-k+1与线段AB有公共点,则k的取值范围是(  )
A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,该双曲线的右支上有一点A,满足△OAF是等边三角形(O为坐标原点),则双曲线的离心率为(  )
A.4B.2C.$\sqrt{3}$+1D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,在四棱锥P-ABCD中,四边形ABCD为梯形,AD∥BC,∠ABC=120°,点E在AD上,AE=BC=AB=2,AD=3BC,点F为PD的中点,PB⊥AC.
(1)证明:PA=PC;
(2)求点F到平面PBE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=5sinxcosx-5$\sqrt{3}$cos2x+$\frac{5}{2}$$\sqrt{3}$(其中x∈R),求:
(1)函数f(x)的最小正周期;
(2)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数$f(x)=\frac{{{e^{2x}}-a}}{{x{e^x}}}$(e为自然对数的底数)是定义在(-∞,0)∪(0,+∞)上的偶函数,则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.直线l过点P(4,1),
(1)若直线l过点Q(-1,6),求直线l的方程;
(2)若直线l在两坐标轴上截距相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知l,m为直线,α为平面,l∥α,m?α,则l与m之间的关系是(  )
A.平行B.垂直C.异面D.平行或异面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.等差数列{an}的前n项和为Sn,若a1>0,S4=S9,则Sn取最大值时n为(  )
A.6B.6或7C.7D.8

查看答案和解析>>

同步练习册答案