精英家教网 > 高中数学 > 题目详情
20.设函数$f(x)=\frac{{{e^{2x}}-a}}{{x{e^x}}}$(e为自然对数的底数)是定义在(-∞,0)∪(0,+∞)上的偶函数,则实数a的值为1.

分析 利用偶函数的性质得到关于实数a的方程,求解方程即可求得最终结果.

解答 解:结合偶函数的性质可得:f(-1)=f(1),
即:$\frac{{e}^{-2}-a}{-{e}^{-1}}=\frac{{e}^{2}-a}{e}$,
整理可得:(a-1)(e2+1)=0,∴a=1.
故答案为:1.

点评 本题考查了偶函数的性质,方程思想的应用等,重点考查学生对基础概念的理解和计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,三棱柱ABC-A1B1C1中,A1A=AB,CB⊥平面A1ABB1
(Ⅰ)证明:AB1⊥平面A1BC;
(Ⅱ)若AC=5,BC=3,∠A1AB=60°,求三棱锥A-A1BC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={-2,1,m},B={1,m2},若A∩B=B,则实数m的值为(  )
A.-1或1B.0或1C.0或-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知方程ex-x-2=0有两个解x1,x2,则(  )
A.区间(-2,0)上无解B.区间(0,1)上有一个解
C.x1+x2<0D.x1+x2>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由4个全等的直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值为(  )
A.$-\frac{7}{25}$B.$\frac{7}{25}$C.$-\frac{12}{25}$D.$\frac{12}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\vec m=(sinx,\sqrt{3}cosx)$,$\vec n=(cosx,cosx)$,设函数$f(x)=\vec m•\vec n-\frac{3}{2}\sqrt{3}$.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若$x∈[-\frac{π}{3},\frac{π}{6}]$,且$F(x)=f(x)-cos(4x+\frac{2π}{3})$,求F(x)的最大值;
(Ⅲ)若[f(x)]2-(2+m)f(x)+2+m≤0在x∈R上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是(  )
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知Sn为等差数列{an}的前n项和,若a6+a10=4,则S15=30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.小李同学要画函数f(x)=Acos(ωx+φ)的图象,其中ω>0,|φ|<$\frac{π}{2}$,小李同学用“五点法”列表,并填写了一些数据,如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
X-$\frac{π}{8}$$\frac{3π}{8}$
f(x)303
(1)请将表格填写完整,并求出函数f(x)的解析式;
(2)将f(x)的图象向右平移$\frac{π}{3}$个单位,得到函数y=g(x),求g(x)的图象中离y轴最近的对称轴.

查看答案和解析>>

同步练习册答案