精英家教网 > 高中数学 > 题目详情
8.已知方程ex-x-2=0有两个解x1,x2,则(  )
A.区间(-2,0)上无解B.区间(0,1)上有一个解
C.x1+x2<0D.x1+x2>0

分析 作出f(x)=ex与g(x)=x+2的函数图象,根据图象的交点横坐标的范围得出结论.

解答 解:由ex-x-2=0可得ex=x+2,
作出f(x)=ex与g(x)=x+2的函数图象,如图所示:

设x1<x2,由图象可知-2<x1<0,故A错误;
当x=1时,f(1)=e,g(1)=3,
∴f(1)<g(1),∴x2>1,故B错误;
同理:f($\frac{3}{2}$)>g($\frac{3}{2}$),f(-$\frac{3}{2}$)<g(-$\frac{3}{2}$),
∴-2<x1<-$\frac{3}{2}$,1<x2<$\frac{3}{2}$,∴x1+x2<0.
故选C.

点评 本题考查了函数图象与方程解的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的离心率e为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,短轴的一个端点为M(0,1),过椭圆左顶点A的直线l与椭圆的另一交点为B.
(1)求椭圆的方程;
(2)若l与直线x=a交于点P,求$\overrightarrow{OB}$•$\overrightarrow{OP}$的值;
(3)若|AB|=$\frac{4}{3}$,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=cos2x+sinxcosx,x∈R.
(1)求$f({\frac{π}{6}})$的值;
(2)若$sinα=\frac{3}{5}$,且$α∈({\frac{π}{2},π})$,求$f({\frac{α}{2}+\frac{π}{24}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,在四棱锥P-ABCD中,四边形ABCD为梯形,AD∥BC,∠ABC=120°,点E在AD上,AE=BC=AB=2,AD=3BC,点F为PD的中点,PB⊥AC.
(1)证明:PA=PC;
(2)求点F到平面PBE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}的通项公式为an=-n+t,数列{bn}的通项公式为bn=3n-3,设cn=$\frac{{a}_{n}+{b}_{n}}{2}$+$\frac{|{a}_{n}-{b}_{n}|}{2}$,在数列{cn}中,cn≥c3(n∈N+),则实数t的取值范围为$(\frac{10}{3},5)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数$f(x)=\frac{{{e^{2x}}-a}}{{x{e^x}}}$(e为自然对数的底数)是定义在(-∞,0)∪(0,+∞)上的偶函数,则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$C_n^0+2C_n^1+{2^2}C_n^2+…+{2^n}C_n^n=729$,则(x-3)n的二项式系数的和32.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,$\overrightarrow{|{AD}|}=|{\overrightarrow{BD}}|=|{\overrightarrow{CD}}|$,$|{\overrightarrow{AB}}|=3$,则$\overrightarrow{AB}•\overrightarrow{AD}$=$\frac{9}{2}$.

查看答案和解析>>

同步练习册答案