精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=cos2x+sinxcosx,x∈R.
(1)求$f({\frac{π}{6}})$的值;
(2)若$sinα=\frac{3}{5}$,且$α∈({\frac{π}{2},π})$,求$f({\frac{α}{2}+\frac{π}{24}})$.

分析 (1)利用二倍角公式以及两角和与差的三角函数化简函数的表达式,代入$\frac{π}{6}$求解即可.
(2)利用函数的解析式化简所求的表达式,通过两角和与差的三角函数以及同角三角函数的基本关系式求解即可.

解答 解:$f(x)={cos^2}x+sinxcosx=\frac{1+cos2x}{2}+\frac{1}{2}sin2x=\frac{1}{2}+\frac{1}{2}({sin2x+cos2x})$=$\frac{1}{2}+\frac{{\sqrt{2}}}{2}sin({2x+\frac{π}{4}})$.
(1)$f({\frac{π}{6}})=\frac{1}{2}+\frac{1}{2}({sin\frac{π}{3}+cos\frac{π}{3}})=\frac{1}{2}+\frac{{\sqrt{3}}}{4}+\frac{1}{4}=\frac{{3+\sqrt{3}}}{4}$.
(2)$f({\frac{a}{2}+\frac{π}{24}})=\frac{1}{2}+\frac{{\sqrt{2}}}{2}sin({α+\frac{π}{12}+\frac{π}{4}})=\frac{1}{2}+\frac{{\sqrt{2}}}{2}sin({α+\frac{π}{3}})$=$\frac{1}{2}+\frac{{\sqrt{2}}}{2}({sinα•\frac{1}{2}+cosα•\frac{{\sqrt{3}}}{2}})$,
∵$sinα=\frac{3}{5}$,且$α∈({\frac{π}{2},π})$,
∴$cosα=-\frac{4}{5}$,
∴$f({\frac{α}{2}+\frac{π}{24}})=\frac{1}{2}+\frac{{\sqrt{2}}}{2}({\frac{3}{5}×\frac{1}{2}-\frac{4}{5}×\frac{{\sqrt{3}}}{2}})=\frac{{10+3\sqrt{2}-4\sqrt{6}}}{20}$.

点评 本题考查两角和与差的三角函数同角三角函数基本关系式的应用,二倍角公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知:空间四边形ABCD如图所示,E、F分别是AB、AD的中点,G、H分别是BC,CD上的点,且CG=$\frac{1}{3}$BC.CH=$\frac{1}{4}$CD,则直线FH与直线EG(  )
A.平行B.相交C.异面D.垂直

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=lnx-ax(a$>\frac{1}{2}$),当x∈(-2,0)时,f(x)的最小值为1,则a的值为(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=xex-aex-1,且f′(1)=e.
(1)求a的值及f(x)的单调区间;
(2)若关于x的方程f(x)=kx2-2(k>2)存在两个不相等的正实数根x1,x2,证明:|x1-x2|>ln($\frac{4}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={-2,1,m},B={1,m2},若A∩B=B,则实数m的值为(  )
A.-1或1B.0或1C.0或-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知矩形ABCD,AB=2AD=2a(a>0),连接四条边的中点成一个新的四边形,记其面积为b1;然后在得到的四边形中,再连接四条边的中点又成一个新的四边形,如图,记其面积为b2;按此方法依次做下去…
(1)求b1和b2
(2)记bn为第n次(n∈N*)得到的四边形的面积,写出bn关于n的表达式(不必证明).
(3)求经过n次(n∈N*)后所得n个四边形的面积之和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知方程ex-x-2=0有两个解x1,x2,则(  )
A.区间(-2,0)上无解B.区间(0,1)上有一个解
C.x1+x2<0D.x1+x2>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\vec m=(sinx,\sqrt{3}cosx)$,$\vec n=(cosx,cosx)$,设函数$f(x)=\vec m•\vec n-\frac{3}{2}\sqrt{3}$.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若$x∈[-\frac{π}{3},\frac{π}{6}]$,且$F(x)=f(x)-cos(4x+\frac{2π}{3})$,求F(x)的最大值;
(Ⅲ)若[f(x)]2-(2+m)f(x)+2+m≤0在x∈R上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.抛物线y=x2-1与直线y=x+1所围成的平面图形的面积是(  )
A.$\frac{9}{2}$B.$\frac{17}{4}$C.5D.$\frac{10}{3}$

查看答案和解析>>

同步练习册答案