| A. | -2 | B. | 2 | C. | -1 | D. | 1 |
分析 根据函数的奇偶性,确定f(x)在(0,2)上的最大值为-1,判断f(x)在(0,2)上的单调性,根据最值列方程即可求出a的值.
解答 解:∵f(x)是奇函数,x∈(-2,0)时,f(x)的最小值为1,
∴f(x)在(0,2)上的最大值为-1,
当x∈(0,2)时,f′(x)=$\frac{1}{x}$-a,
令f′(x)=0得x=$\frac{1}{a}$,又a>$\frac{1}{2}$,∴0<$\frac{1}{a}$<2,
令f′(x)>0,则x<$\frac{1}{a}$,令f′(x)<0,则x>$\frac{1}{a}$,
∴f(x)在(0,$\frac{1}{a}$)上递增,在($\frac{1}{a}$,2)上递减,
∴f(x)max=f($\frac{1}{a}$)=ln$\frac{1}{a}$-a•$\frac{1}{a}$=-1,∴ln$\frac{1}{a}$=0,解得a=1.
故选:D.
点评 本题考查函数单调性与奇偶性的结合,考查导数知识的运用,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | (¬p)∧q | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{\sqrt{7}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com