分析 (1)△ABC的面积S=$\frac{1}{2}$absinC,求出ab的值,再结合余弦定理即可求解a,b;
(2)根据sinB=2sinA,正弦定理可得b=2a,结合余弦定理即可求解a,b;利用△ABC的面积S=$\frac{1}{2}$absinC求解.
解答 解:(1)∵c=4,C=$\frac{π}{3}$.
△ABC的面积S=$\frac{1}{2}$absinC=4$\sqrt{3}$
∴ab=16.
由余弦定理:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
∴a2+b2=32,
解得:a=b=4.
(2)∵sinB=2sinA,
由正弦定理,可得b=2a,
根据余弦定理,得cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
∴a=$\frac{4\sqrt{3}}{3}$,b=$\frac{8\sqrt{3}}{3}$.
故得△ABC的面积S=$\frac{1}{2}$absinC=$\frac{8\sqrt{3}}{3}$.
点评 本题考查了正余弦定理的灵活运用和计算能力,三角形面积的计算.属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (0,2] | B. | (0,2) | C. | [2,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若f′(x0)=0,则x0是f(x)的极值点 | |
| B. | 函数f(x)的图象关于原点中心对称 | |
| C. | 若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)上单调递减 | |
| D. | ?x0∈R,f(x0)=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com