精英家教网 > 高中数学 > 题目详情
13.已知集合{a,b,c}={1,2,3},①a≠2;②a=3;③b=1;④c=3.若①②③④中有且仅有一个是正确的,则a-b-c的值是-4.

分析 根据条件①②③④中有且仅有一个是正确的,结合集合相等的条件分别进行讨论即可.

解答 解:若①a≠2正确,则a≠3,b≠1,c≠3,
则a=1,c=2,b=3,此时a-b-c=1-3-2=-4,满足条件.
若②a=3正确,则①a≠2也正确,不满足条件.
若③b=1正确,则a=2,c=3,此时④c=3也正确,不满足条件.
若④c=3正确,则a=2,b=1,此时③也正确,不满足条件.
综上,满足条件的a=1,b=3,c=2,
故答案为:-4.

点评 本题主要考查命题的真假判断,根据集合相等的条件,分别进行讨论是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为$\frac{3}{4},\frac{2}{3},\frac{1}{2}$,乙队每人答对的概率都是$\frac{2}{3}$.设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分.
(Ⅰ)求ξ=2概率;
(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{a-{2}^{x}}{{2}^{x}+1}$是奇函数.
(1)求a的值;
(2)判断函数f(x)在其定义域上的单调性,并用函数单调性的定义证明;
(3)已知实数m>0,且m≠1,解关于x的不等式:f(logm(2x+1))+$\frac{1}{3}$<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.把函数y=cos2x+$\sqrt{3}$sin2x的图象向左平移m(其中m>0)个单位,所得图象关于y轴对称,则m的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题p:若x=1,则x2=1.关于命题p及其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是(  )
A.真、真、真、真B.真、假、假、真C.假、真、真、假D.假、假、真、真

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下面使用类比推理正确的是(  )
A.”loga(x•y)=logax+logay“类比推出“sin(x•y)=sinx+siny“
B.“(a+b)•c=ac+bc”类比推出“(a•b)•c=ac•bc”
C.“(a+b)•c=ac+bc”类比推出“$\frac{a+b}{c}$=$\frac{a}{c}+\frac{b}{c}$(c≠0)“
D.“(a•b)•c=a•(b•c)“类比推出“($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)“

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C1:x2+y2+Dx+Ey+F=0关于直线x+y-2=0对称,且经过点(0,0)和(4,0).
(Ⅰ)求圆C1的标准方程;
(Ⅱ)已知圆C2的方程为(x-2)2+y2=1.
(i)若过原点的直线l与C2相交所得的弦长为$\sqrt{2}$,求l的方程;
(ii)已知斜率为k的直线m过圆C2上一动点,且与圆C1相交于A、B两点,射线PC2交圆C1于点Q,求△ABQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)=2sin(ωx+φ)-m,恒有f(x+$\frac{π}{2}$)=f(-x)成立,且f($\frac{π}{4}$)=-2,则实数m的值为(  )
A.±2B.±4C.-4或0D.0或4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:
 x 3 4 5 6
 y 2.5 3 m 4.5
据相关性检验,这组样本数据具有线性相关关系,求得其回归方程是$\stackrel{∧}{y}$=0.7x+0.35,则实数m的值为  (  )
A.3.5B.3.85C.4D.4.15

查看答案和解析>>

同步练习册答案