精英家教网 > 高中数学 > 题目详情
5.已知圆C1:x2+y2+Dx+Ey+F=0关于直线x+y-2=0对称,且经过点(0,0)和(4,0).
(Ⅰ)求圆C1的标准方程;
(Ⅱ)已知圆C2的方程为(x-2)2+y2=1.
(i)若过原点的直线l与C2相交所得的弦长为$\sqrt{2}$,求l的方程;
(ii)已知斜率为k的直线m过圆C2上一动点,且与圆C1相交于A、B两点,射线PC2交圆C1于点Q,求△ABQ面积的最大值.

分析 (Ⅰ)根据圆C1:x2+y2+Dx+Ey+F=0关于直线x+y-2=0对称,且经过点(0,0)和(4,0),建立方程组,即可求圆C1的标准方程;
(Ⅱ)分类讨论,利用过原点的直线l与C2相交所得的弦长为$\sqrt{2}$,求l的方程;
(ii)利用S△ABQ=$3{S}_{△AB{C}_{2}}$,求△ABQ面积的最大值.

解答 解:(Ⅰ)由题意,$\left\{\begin{array}{l}{-\frac{D}{2}-\frac{E}{2}-2=0}\\{F=0}\\{16+4D+F=0}\end{array}\right.$,
解得D=-4,E=F=0,
∴圆C1的标准方程(x-2)2+y2=4;
(Ⅱ)(i)斜率不存在时,方程为x=0,与C2无交点,不满足题意;
斜率存在时,设方程为kx-y=0,则圆心到直线的距离为$\frac{|2k|}{\sqrt{{k}^{2}+1}}$
∵过原点的直线l与C2相交所得的弦长为$\sqrt{2}$,
∴$\frac{|2k|}{\sqrt{{k}^{2}+1}}$=$\sqrt{1-\frac{1}{2}}$,
∴k=±$\frac{\sqrt{7}}{7}$,
∴l的方程为x$±\sqrt{7}$y=0;
(ii)设P(x0,y0),AB::y-y0=k(x-x0),
∵|C2Q|=2|C2P|,
∴${S}_{△B{C}_{2}Q}=2{S}_{△B{C}_{2}P},{S}_{△A{C}_{2}Q}=2{S}_{△A{C}_{2}P}$,
∴S△ABQ=$3{S}_{△AB{C}_{2}}$
圆心C2到直线AB的距离d=$\frac{|k(2-{x}_{0})+{y}_{0}|}{\sqrt{1+{k}^{2}}}$(0<d≤1),|AB|=2$\sqrt{4-{d}^{2}}$,
∵${S}_{△AB{C}_{2}}$=$\frac{1}{2}$|AB|d,
∴S△ABQ=$3{S}_{△AB{C}_{2}}$=3d$\sqrt{4-{d}^{2}}$=3$\sqrt{-({d}^{2}-2)^{2}+4}$
∴d2=1时,△ABQ的面积最大,最大为3$\sqrt{3}$.

点评 本题考查圆的方程,考查直线与圆的位置关系,考查三角形面积的计算,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设a为函数y=sinx+$\sqrt{3}$cosx(x∈R)的最大值,则a的值是(  )
A.2B.1C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下面给出了四个类比推理:
(1)由“若a,b,c∈R则(ab)c=a(bc)”类比推出“若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$为三个向量则($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)”
(2)“在平面内,三角形的两边之和大于第三边”类比推出“在空间中,四面体的任意三个面的面积之和大于第四个面的面积”
(3)“a,b为实数,若a2+b2=0则a=b=0”类比推出“z1,z2为复数,若z${\;}_{1}^{2}$+z${\;}_{2}^{2}$=0则z1=z2=0”;
(4)“在平面内,过不在同一条直线上的三个点有且只有一个圆”类比推出“在空间中,过不在同一个平面上的四个点有且只有一个球”
上述四个推理中,结论正确的序号是(  )
A.(2)(4)B.(1)(2)(4)C.(2)(3)D.(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合{a,b,c}={1,2,3},①a≠2;②a=3;③b=1;④c=3.若①②③④中有且仅有一个是正确的,则a-b-c的值是-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=$\frac{1}{\sqrt{4-{x}^{2}}}$+lnx的定义域为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a,b∈R,i是虚数单位,若a+i与3-bi互为共扼复数,则(a-bi)2=(  )
A.10+6iB.8+6iC.8-6iD.10-6i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:
①若α∥β,α∥γ,则β∥γ;
②若α⊥β,m∥α,则m⊥β;           
③若m⊥α,m∥β,则α⊥β;       
④若m∥n,m∥α,则n∥α.
其中真命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.5位大学生站在一排照相.
(1)若其中的甲乙两位同学必须相等,问有多少种不同的排法?
(2)若上述5位大学生中有3位女大学生和2位男大学生,则这两位男大学生不相邻的排法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四边形ABCD满足AB⊥AD,BC∥AD且BC=4,点M为PC的中点,点E为BC边上的点,且$\frac{BE}{EC}$=λ.
(Ⅰ)求证:平面ADM⊥平面PBC;
(Ⅱ)是否存在实数λ,使得二面角P-DE-B的余弦值为$\frac{\sqrt{2}}{2}$?若存在,求出实数λ的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案