分析 (Ⅰ)取PB中点N,连结MN,AN,推导出四边形ADMN为平行四边形,由AP⊥AD,AB⊥AD,得AD⊥AN,AN⊥MN,由此能证明平面ADM⊥平面PBC.
(Ⅱ)λ=1时,点E为BC边的中点,∠PDA为二面角P-DE-B的一个平面角,由此推导出二面角P-DE-B的余弦值为$\frac{\sqrt{2}}{2}$.
解答 证明:(Ⅰ)取PB中点N,连结MN,AN,![]()
∵M是PC中点,∴MN∥BC,MN=$\frac{1}{2}BC=2$,
又∵BC∥AD,∴MN∥AD,MN=AD,
∴四边形ADMN为平行四边形,
∵AP⊥AD,AB⊥AD,∴AD⊥平面PAB,
∴AD⊥AN,∴AN⊥MN,
∵AP=AB,∴AN⊥PB,∴AN⊥平面PBC,
∵AN?平面ADM,∴平面ADM⊥平面PBC.
解:(Ⅱ)存在实数λ=1,使得二面角P-DE-B的余弦值为$\frac{\sqrt{2}}{2}$.
∵λ=1,∴点E为BC边的中点,
∴DE∥AB,∴DE⊥平面PAD,
∴∠PDA为二面角P-DE-B的一个平面角,
在等腰Rt△PDA中,∠PDA=$\frac{π}{4}$,
∴二面角P-DE-B的余弦值为$\frac{\sqrt{2}}{2}$.
点评 本题考查面面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | m | 4.5 |
| A. | 3.5 | B. | 3.85 | C. | 4 | D. | 4.15 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 5 | C. | 2$\sqrt{6}$ | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com