精英家教网 > 高中数学 > 题目详情
13.求方程6sin2x-4sin2x=-1,x∈[0,π]的解集.

分析 将方程化为(7sinx-cosx)(sinx-cosx)=0,求出sinx与cosx的关系即可tanx的值,从而求出原方程的解集.

解答 解:方程6sin2x-4sin2x=-1可化为:
6sin2x-8sinxcosx+1=0,
即7sin2x-8sinxcosx+cos2x=0,
即(7sinx-cosx)(sinx-cosx)=0;
解得7sinx=cosx或sinx=cosx,
即tanx=$\frac{1}{7}$或tanx=1;
又x∈[0,π],
所以x=arctan$\frac{1}{7}$或x=$\frac{π}{4}$,
所以原方程的解集为{arctan$\frac{1}{7}$,$\frac{π}{4}$}.

点评 题考查三角函数恒等变换,变形并分解因式是解决问题的关键,属中档题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.5位大学生站在一排照相.
(1)若其中的甲乙两位同学必须相等,问有多少种不同的排法?
(2)若上述5位大学生中有3位女大学生和2位男大学生,则这两位男大学生不相邻的排法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四边形ABCD满足AB⊥AD,BC∥AD且BC=4,点M为PC的中点,点E为BC边上的点,且$\frac{BE}{EC}$=λ.
(Ⅰ)求证:平面ADM⊥平面PBC;
(Ⅱ)是否存在实数λ,使得二面角P-DE-B的余弦值为$\frac{\sqrt{2}}{2}$?若存在,求出实数λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l的参数方程为$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}$(t为参数),曲线C的极坐标方程是ρ=$\frac{sinθ}{{{{cos}^2}θ}}$,以极点为原点,极轴为x轴正方向建立直角坐标系,点M(-1,0),直线l与曲线C交于A、B两点.
(Ⅰ)写出直线l的极坐标方程与曲线C的普通方程;
(Ⅱ)求线段MA、MB长度之积MA•MB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知四边形ABCD为梯形,AB∥DC,对角线AC,BD交于点O,CE⊥平面ABCD,CE=AD=DC=BC=1,∠ABC=60°,F为线段BE上的点,$\overrightarrow{EF}$=$\frac{1}{3}$$\overrightarrow{EB}$.
(I)证明:OF∥平面CED;
(Ⅱ)求平面ADF与平面BCE所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图所示(单位:cm),则该几何体的体积是(  )cm3
A.1+2πB.1+$\frac{4π}{3}$C.1+$\frac{π}{2}$D.1+$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为(  )
A.36πB.45πC.32πD.144π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一个几何体由多面体和旋转体的整体或一部分组合而成,其三视图如图所示,则该几何体的体积是(  )
A.$\frac{3}{2}$πB.π+1C.π+$\frac{1}{6}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知两圆的半径分别为1cm和2cm,圆心距是3cm,那么这两个圆的公切线条数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案