分析 将方程化为(7sinx-cosx)(sinx-cosx)=0,求出sinx与cosx的关系即可tanx的值,从而求出原方程的解集.
解答 解:方程6sin2x-4sin2x=-1可化为:
6sin2x-8sinxcosx+1=0,
即7sin2x-8sinxcosx+cos2x=0,
即(7sinx-cosx)(sinx-cosx)=0;
解得7sinx=cosx或sinx=cosx,
即tanx=$\frac{1}{7}$或tanx=1;
又x∈[0,π],
所以x=arctan$\frac{1}{7}$或x=$\frac{π}{4}$,
所以原方程的解集为{arctan$\frac{1}{7}$,$\frac{π}{4}$}.
点评 题考查三角函数恒等变换,变形并分解因式是解决问题的关键,属中档题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+2π | B. | 1+$\frac{4π}{3}$ | C. | 1+$\frac{π}{2}$ | D. | 1+$\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$π | B. | π+1 | C. | π+$\frac{1}{6}$ | D. | π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com