精英家教网 > 高中数学 > 题目详情
2.一个几何体由多面体和旋转体的整体或一部分组合而成,其三视图如图所示,则该几何体的体积是(  )
A.$\frac{3}{2}$πB.π+1C.π+$\frac{1}{6}$D.π

分析 由三视图知该几何体是组合体:左边是直三棱柱、右边是半个圆柱,由三视图求出几何元素的长度,由柱体的体积公式求出几何体的体积.

解答 解:根据三视图可知几何体是组合体:左边是直三棱柱、右边是半个圆柱,
直三棱柱的底面是等腰直角三角形,直角边是1,侧棱长是2,
圆柱的底面半径是1,母线长是2,
∴该几何体的体积V=$\frac{1}{2}×1×1×2+\frac{1}{2}×π×{1}^{2}×2$
=π+1,
故选:B.

点评 本题考查由三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:
 x 3 4 5 6
 y 2.5 3 m 4.5
据相关性检验,这组样本数据具有线性相关关系,求得其回归方程是$\stackrel{∧}{y}$=0.7x+0.35,则实数m的值为  (  )
A.3.5B.3.85C.4D.4.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求方程6sin2x-4sin2x=-1,x∈[0,π]的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已数列的前n项和为Sn,且满Sn-1-Sn=2Sn•Sn-1(n∈N*,n≥2),a1=1.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{S}_{n}}$,Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$,若Tn<2m-1对任意的正整数恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)=ex-e-x+1(e为自然对数的底数).若f(a)+f(a-2)<2,则实数a的取值范围是(  )
A.a<1B.a<2C.a>1D.a>2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{{k}^{2}x+k(1-{a}^{2}),x≥0}\\{{x}^{2}+({a}^{2}-6a+8)x+(3-a)^{2},x<0}\end{array}\right.$,其中a∈R.若对任意的非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则k的取值范围是k<0或k≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.f(x)=$\left\{{\begin{array}{l}{\frac{1}{2}}&{(-1≤x≤1)}\\{\frac{1}{2}x}&{(1<x≤4)}\end{array}}$.
(1)用直尺或三角板画出y=f(x)的图象;
(2)求f(x)的最小值和最大值以及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$\overrightarrow{m}$=(sinx,-1),$\overrightarrow{n}$=(sinx+$\sqrt{3}$cosx,-$\frac{3}{2}$),g(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)当x∈[0,π]时,求函数g(x)的单调递增区间;
(2)将函数g(x)的图象向左平移$\frac{π}{6}$个单位,再横坐标伸长为原来的2倍,纵坐标伸长为原来的4倍,向下平移两个单位后,得到f(x)的图象,求f(x)的最大值,及取得最大值时x的集合;
(3)若a,b,c是△ABC的内角A,B,C的对边,对定义域内任意x,有f(x)≤f(A),若a=$\sqrt{3}$.求$\overrightarrow{AB}$•$\overrightarrow{AC}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>0)的一个焦点为F(-1,0),左右顶点分别为A,B,经过点F的直线l与椭圆M交于C,D两点.
(Ⅰ)求椭圆方程;
(Ⅱ)记△ABD与△ABC的面积分别为S1和S2,求|S1-S2|的最大值.

查看答案和解析>>

同步练习册答案