·ÖÎö £¨1£©n¡Ý2£¬ÓÉSn£¨1+2Sn-1£©=Sn-1£¬ÓÉÉÏʽ֪ÈôSn-1¡Ù0£¬ÔòSn¡Ù0£¬½«ÔʽÁ½±ßͬ³ýÒÔSn•Sn-1£¬¼´¿ÉÇóµÃ$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2£¬{$\frac{1}{{S}_{n}}$}ÊÇÒÔ1ΪÊ×ÏÒÔ2Ϊ¹«²îµÄµÈ²îÊýÁУ¬ÇóµÃSn=$\frac{1}{2n-1}$£¬an=-2Sn•Sn-1=$\frac{1}{2n-1}$-$\frac{1}{2n-3}$£¬µ±n=1£¬a1=1£®¼´¿ÉÇóµÃÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©bn=$\frac{1}{{S}_{n}}$=2n-1£¬$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{2n-1}$-$\frac{1}{2n-3}$£¬²ÉÓá°ÁÑÏî·¨¡±¼´¿ÉÇóµÃTn=$\frac{n}{2n+1}$£¬ÓÉTn£¼2m-1£¬×ª»»³Ém£¾$\frac{1}{2}$¡Á$\frac{3n+1}{2n+1}$£¬¶ÔÈÎÒâµÄÕýÕûÊýºã³ÉÁ¢£¬¼´¿ÉÇóµÃmµÄȡֵ·¶Î§£®
½â´ð ½â£º£¨1£©Sn-1-Sn=2Sn•Sn-1£¨n¡ÊN*£¬n¡Ý2£©£¬
¡àSn£¨1+2Sn-1£©=Sn-1£¬ÓÉÉÏʽ֪ÈôSn-1¡Ù0£¬ÔòSn¡Ù0£®
¡ßS1=a1¡Ù0£¬ÓɵÝÍÆ¹ØÏµÖªSn¡Ù0£®n¡ÊN*£¬
¡à$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2£¬S1=a1=1£¬
¡à{$\frac{1}{{S}_{n}}$}ÊÇÒÔ1ΪÊ×ÏÒÔ2Ϊ¹«²îµÄµÈ²îÊýÁУ¬
¡à$\frac{1}{{S}_{n}}$=1+2£¨n-1£©=2n-1£¬
¡àSn=$\frac{1}{2n-1}$£¬£¨n¡ÊN*£¬n¡Ý2£©£¬
Sn-1=$\frac{1}{2n-3}$
¡àan=-2Sn•Sn-1=-$\frac{2}{£¨2n-1£©£¨2n-3£©}$=$\frac{1}{2n-1}$-$\frac{1}{2n-3}$£¬
an=$\left\{\begin{array}{l}{1}&{n=1}\\{\frac{1}{2n-1}-\frac{1}{2n-3}}&{n¡Ý2}\end{array}\right.$£»
£¨2£©bn=$\frac{1}{{S}_{n}}$=2n-1£¬
$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{£¨2n-1£©£¨2n+1£©}$=$\frac{1}{2}$£¨$\frac{1}{2n-1}$-$\frac{1}{2n+1}$£©£¬
Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+¡+$\frac{1}{{b}_{n}{b}_{n+1}}$£¬
=$\frac{1}{2}$¡Á[£¨1-$\frac{1}{3}$£©+£¨$\frac{1}{3}$-$\frac{1}{5}$£©+¡+£¨$\frac{1}{2n-1}$-$\frac{1}{2n+1}$£©]
=$\frac{1}{2}$¡Á£¨1-$\frac{1}{2n+1}$£©£¬
=$\frac{n}{2n+1}$£¬
Tn£¼2m-1£¬¼´$\frac{n}{2n+1}$£¼2m-1£¬
¼´m£¾$\frac{1}{2}$¡Á$\frac{3n+1}{2n+1}$£¬
ÓÉ$\frac{3n+1}{2n+1}$£¼$\frac{3}{2}$£¬
¡àm¡Ý$\frac{3}{4}$£®
µãÆÀ ±¾Ì⿼²éÊýÁеÝÍÆÊ½£¬¿¼²éÊýÁеÄͨÏîÓëÇóºÍ£¬ÀûÓõ¼ÊýÇóº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | C=0£¬B£¾0 | B£® | A£¾0£¬B£¾0£¬C=0 | C£® | AB£¼0£¬C=0 | D£® | C=0£¬AB£¾0 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1+2¦Ð | B£® | 1+$\frac{4¦Ð}{3}$ | C£® | 1+$\frac{¦Ð}{2}$ | D£® | 1+$\frac{¦Ð}{6}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 36¦Ð | B£® | 45¦Ð | C£® | 32¦Ð | D£® | 144¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{3}{2}$¦Ð | B£® | ¦Ð+1 | C£® | ¦Ð+$\frac{1}{6}$ | D£® | ¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{{\sqrt{2}}}{3}$¦Ð | B£® | $\frac{4}{3}$¦Ð | C£® | $\sqrt{6}$¦Ð | D£® | 8$\sqrt{6}$¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3 | B£® | -3 | C£® | 0 | D£® | 4$\sqrt{3}$-1 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com