10£®ÒÑÊýÁеÄǰnÏîºÍΪSn£¬ÇÒÂúSn-1-Sn=2Sn•Sn-1£¨n¡ÊN*£¬n¡Ý2£©£¬a1=1£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=$\frac{1}{{S}_{n}}$£¬Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+¡­+$\frac{1}{{b}_{n}{b}_{n+1}}$£¬ÈôTn£¼2m-1¶ÔÈÎÒâµÄÕýÕûÊýºã³ÉÁ¢£¬ÇómµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©n¡Ý2£¬ÓÉSn£¨1+2Sn-1£©=Sn-1£¬ÓÉÉÏʽ֪ÈôSn-1¡Ù0£¬ÔòSn¡Ù0£¬½«Ô­Ê½Á½±ßͬ³ýÒÔSn•Sn-1£¬¼´¿ÉÇóµÃ$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2£¬{$\frac{1}{{S}_{n}}$}ÊÇÒÔ1ΪÊ×ÏÒÔ2Ϊ¹«²îµÄµÈ²îÊýÁУ¬ÇóµÃSn=$\frac{1}{2n-1}$£¬an=-2Sn•Sn-1=$\frac{1}{2n-1}$-$\frac{1}{2n-3}$£¬µ±n=1£¬a1=1£®¼´¿ÉÇóµÃÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©bn=$\frac{1}{{S}_{n}}$=2n-1£¬$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{2n-1}$-$\frac{1}{2n-3}$£¬²ÉÓá°ÁÑÏî·¨¡±¼´¿ÉÇóµÃTn=$\frac{n}{2n+1}$£¬ÓÉTn£¼2m-1£¬×ª»»³Ém£¾$\frac{1}{2}$¡Á$\frac{3n+1}{2n+1}$£¬¶ÔÈÎÒâµÄÕýÕûÊýºã³ÉÁ¢£¬¼´¿ÉÇóµÃmµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©Sn-1-Sn=2Sn•Sn-1£¨n¡ÊN*£¬n¡Ý2£©£¬
¡àSn£¨1+2Sn-1£©=Sn-1£¬ÓÉÉÏʽ֪ÈôSn-1¡Ù0£¬ÔòSn¡Ù0£®
¡ßS1=a1¡Ù0£¬ÓɵÝÍÆ¹ØÏµÖªSn¡Ù0£®n¡ÊN*£¬
¡à$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2£¬S1=a1=1£¬
¡à{$\frac{1}{{S}_{n}}$}ÊÇÒÔ1ΪÊ×ÏÒÔ2Ϊ¹«²îµÄµÈ²îÊýÁУ¬
¡à$\frac{1}{{S}_{n}}$=1+2£¨n-1£©=2n-1£¬
¡àSn=$\frac{1}{2n-1}$£¬£¨n¡ÊN*£¬n¡Ý2£©£¬
Sn-1=$\frac{1}{2n-3}$
¡àan=-2Sn•Sn-1=-$\frac{2}{£¨2n-1£©£¨2n-3£©}$=$\frac{1}{2n-1}$-$\frac{1}{2n-3}$£¬
an=$\left\{\begin{array}{l}{1}&{n=1}\\{\frac{1}{2n-1}-\frac{1}{2n-3}}&{n¡Ý2}\end{array}\right.$£»
£¨2£©bn=$\frac{1}{{S}_{n}}$=2n-1£¬
$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{£¨2n-1£©£¨2n+1£©}$=$\frac{1}{2}$£¨$\frac{1}{2n-1}$-$\frac{1}{2n+1}$£©£¬
Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+¡­+$\frac{1}{{b}_{n}{b}_{n+1}}$£¬
=$\frac{1}{2}$¡Á[£¨1-$\frac{1}{3}$£©+£¨$\frac{1}{3}$-$\frac{1}{5}$£©+¡­+£¨$\frac{1}{2n-1}$-$\frac{1}{2n+1}$£©]
=$\frac{1}{2}$¡Á£¨1-$\frac{1}{2n+1}$£©£¬
=$\frac{n}{2n+1}$£¬
Tn£¼2m-1£¬¼´$\frac{n}{2n+1}$£¼2m-1£¬
¼´m£¾$\frac{1}{2}$¡Á$\frac{3n+1}{2n+1}$£¬
ÓÉ$\frac{3n+1}{2n+1}$£¼$\frac{3}{2}$£¬
¡àm¡Ý$\frac{3}{4}$£®

µãÆÀ ±¾Ì⿼²éÊýÁеÝÍÆÊ½£¬¿¼²éÊýÁеÄͨÏîÓëÇóºÍ£¬ÀûÓõ¼ÊýÇóº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Ö±ÏßLµÄ·½³ÌΪ-Ax-By+C=0£¬ÈôÖ±ÏßL¹ýÔ­µãºÍÒ»¡¢ÈýÏóÏÞ£¬Ôò£¨¡¡¡¡£©
A£®C=0£¬B£¾0B£®A£¾0£¬B£¾0£¬C=0C£®AB£¼0£¬C=0D£®C=0£¬AB£¾0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}$£¨tΪ²ÎÊý£©£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=$\frac{sin¦È}{{{{cos}^2}¦È}}$£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáÕý·½Ïò½¨Á¢Ö±½Ç×ø±êϵ£¬µãM£¨-1£¬0£©£¬Ö±ÏßlÓëÇúÏßC½»ÓÚA¡¢BÁ½µã£®
£¨¢ñ£©Ð´³öÖ±ÏßlµÄ¼«×ø±ê·½³ÌÓëÇúÏßCµÄÆÕͨ·½³Ì£»
£¨¢ò£©ÇóÏß¶ÎMA¡¢MB³¤¶ÈÖ®»ýMA•MBµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¨µ¥Î»£ºcm£©£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©cm3£®
A£®1+2¦ÐB£®1+$\frac{4¦Ð}{3}$C£®1+$\frac{¦Ð}{2}$D£®1+$\frac{¦Ð}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èçͼ£¬Íø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª1£¬´ÖÏß»­³öµÄÊÇij¸ö¼¸ºÎÌåµÄÈýÊÓͼ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®36¦ÐB£®45¦ÐC£®32¦ÐD£®144¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýg£¨x£©=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+2x
¢ÙÈôg£¨x£©ÔÚ£¨-2£¬-1£©ÄÚΪ¼õº¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
¢ÚÈôg£¨x£©ÔÚÇø¼ä£¨-2£¬-1£©ÄÚ²»µ¥µ÷£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Ò»¸ö¼¸ºÎÌåÓɶàÃæÌåºÍÐýתÌåµÄÕûÌå»òÒ»²¿·Ö×éºÏ¶ø³É£¬ÆäÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{3}{2}$¦ÐB£®¦Ð+1C£®¦Ð+$\frac{1}{6}$D£®¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èôij¿Õ¼ä¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬¸ù¾ÝͼÖÐÊý¾Ý£¬¿ÉµÃ¸Ã¼¸ºÎÌåµÄÍâ½ÓÇòµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{2}}}{3}$¦ÐB£®$\frac{4}{3}$¦ÐC£®$\sqrt{6}$¦ÐD£®8$\sqrt{6}$¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=asinx-btanx+4cos$\frac{¦Ð}{3}$£¬ÇÒf£¨-1£©=1£¬Ôòf£¨1£©=£¨¡¡¡¡£©
A£®3B£®-3C£®0D£®4$\sqrt{3}$-1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸