精英家教网 > 高中数学 > 题目详情
15.已知函数g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+2x
①若g(x)在(-2,-1)内为减函数,求实数a的取值范围;
②若g(x)在区间(-2,-1)内不单调,求实数a的取值范围.

分析 ①求出函数的导数,问题转化为a≤x+$\frac{2}{x}$在(-2,-1)内恒成立,根据函数单调性的性质求出a的范围即可;
②令f(x)=x2-ax+2,由题意得到f(x)在(-2,-1)有零点,根据二次函数的性质得到关于a的不等式组,解出即可.

解答 解:g′(x)=x2-ax+2,
①若g(x)在(-2,-1)内为减函数,
则x2-ax+2≤0在(-2,-1)内恒成立,
即a≤x+$\frac{2}{x}$在(-2,-1)内恒成立,
令h(x)=x+$\frac{2}{x}$,h′(x)=1-$\frac{2}{{x}^{2}}$,
令h′(x)>0,解得:-2<x<-$\sqrt{2}$,
令h′(x)<0,解得:-$\sqrt{2}$<x<-1,
∴h(x)在(-2,-$\sqrt{2}$)递增,在(-$\sqrt{2}$,-1)递减,
∴h(x)min=h(-2)或h(-1),
而h(-2)=h(-1)=-3,
故a≤-3;
②令f(x)=x2-ax+2,
若g(x)在区间(-2,-1)内不单调,
则f(x)在(-2,-1)有相异零点,
∴△=a2-8>0,解得:a>2$\sqrt{2}$或a<-2$\sqrt{2}$,
设它的两个零点分别为 x1,x2,则x1•x2=2>0,
两根同号,由题意两根均为负数,
∴x1+x2=a<0,∴a<-2$\sqrt{2}$,
而f(-2)f(-1)=2(a+3)2>0,
∴$\left\{\begin{array}{l}{f(-2)>0}\\{f(-1)>0}\\{-2<\frac{a}{2}<-1}\end{array}\right.$,
解得:-3<a<-2,
综上,-3<a<-2$\sqrt{2}$.

点评 本题考查了函数的单调性问题,考查导数的应用以及基本不等式的性质,二次函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在△ABC中,直线AB的方程为3x-2y-1=0,直线AC的方程为2x+3y-18=0.直线BC的方程为3x+4y-m=0(m≠25).
(1)求证:△ABC为直角三角形;
(2)当△ABC的BC边上的高为1时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2,x>0}\\{-3|x+a|+a,x<0}\end{array}\right.$的图象上恰有三对点关于原点成中心对称,则a的取值范围是(  )
A.(-$\frac{17}{8}$,-2)B.(-$\frac{17}{8}$,-2]C.[1,$\frac{17}{16}$)D.(1,$\frac{17}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某三棱锥的三视图如图所示,则该三棱锥的外接球的表面积是(  )
A.B.C.$\sqrt{5}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已数列的前n项和为Sn,且满Sn-1-Sn=2Sn•Sn-1(n∈N*,n≥2),a1=1.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{S}_{n}}$,Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$,若Tn<2m-1对任意的正整数恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=f(x)对任意的x∈R满足f′(x)-f(x)ln2>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是(  )
A.4f(-2)>f(0)B.2f(1)>f(2)C.2f(-2)<f(-1)D.2f(0)>f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{{k}^{2}x+k(1-{a}^{2}),x≥0}\\{{x}^{2}+({a}^{2}-6a+8)x+(3-a)^{2},x<0}\end{array}\right.$,其中a∈R.若对任意的非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则k的取值范围是k<0或k≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x-2}-1,x≥0}\\{x+2,x<0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≥0}\\{\frac{1}{x},x<0}\end{array}\right.$,则方程f[g(x)]-1=0的根有3或1或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.边长为4的等边△ABC中,$\overrightarrow{AB}$•$\overrightarrow{BC}$的值为(  )
A.8B.-8C.4D.-4

查看答案和解析>>

同步练习册答案